qJa*_*ake 8 math geometry collision-detection
如果两个三角形在2D坐标平面上的顶点,我怎么能以编程方式检测两个三角形是否相互接触?这包括触摸点或边缘,以及一个三角形是否完全在另一个内部.
您可以通过找到一条边(在构成两个三角形的总共 6 条边中)作为分隔线来证明这两个三角形不会发生碰撞,其中一个三角形的所有顶点都位于一侧,并且另一个三角形位于另一边。如果你能找到这样的边,那么这意味着三角形不相交,否则三角形会发生碰撞。
这是三角形碰撞函数的 Matlab 实现。你可以在sameside这里找到函数的理论:http : //www.blackpawn.com/texts/pointinpoly/default.html
function flag = triangle_intersection(P1, P2)
% triangle_test : returns true if the triangles overlap and false otherwise
% P1, P2: a 3 by 2 array (each), describing the vertices of a triangle,
% the first column corresponds to the x coordinates while the second column
% corresponds to the y coordinates
function flag = sameside(p1,p2,a,b)
% sameside : returns true if the p1,p1 lie on same sides of the
% edge ab and false otherwise
p1(3) = 0; p2(3) = 0; a(3) = 0; b(3) = 0;
cp1 = cross(b-a, p1-a);
cp2 = cross(b-a, p2-a);
if(dot(cp1, cp2) >= 0)
flag = true;
else
flag = false;
end
end
% Repeat the vertices for the loop
P1(4:5,:) = P1(1:2,:);
P2(4:5,:) = P2(1:2,:);
flag = true;
% Testing all the edges of P1
for i=1:3
if(~sameside(P1(i,:), P2(1,:), P1(i+1,:), P1(i+2,:)) ...
&& sameside(P2(1,:), P2(2,:), P1(i+1,:), P1(i+2,:)) ...
&& sameside(P2(2,:), P2(3,:), P1(i+1,:), P1(i+2,:)))
flag = false; return;
end
end
% Testing all the edges of P2
for i=1:3
if(~sameside(P2(i,:), P1(1,:), P2(i+1,:), P2(i+2,:)) ...
&& sameside(P1(1,:), P1(2,:), P2(i+1,:), P2(i+2,:)) ...
&& sameside(P1(2,:), P1(3,:), P2(i+1,:), P2(i+2,:)))
flag = false; return;
end
end
end
Run Code Online (Sandbox Code Playgroud)
总之,哈桑的回答是最快的。
https://jsfiddle.net/eyal/gxw3632c/
这是 JavaScript 中最快的代码:
// check that all points of the other triangle are on the same side of the triangle after mapping to barycentric coordinates.
// returns true if all points are outside on the same side
var cross2 = function(points, triangle) {
var pa = points.a;
var pb = points.b;
var pc = points.c;
var p0 = triangle.a;
var p1 = triangle.b;
var p2 = triangle.c;
var dXa = pa.x - p2.x;
var dYa = pa.y - p2.y;
var dXb = pb.x - p2.x;
var dYb = pb.y - p2.y;
var dXc = pc.x - p2.x;
var dYc = pc.y - p2.y;
var dX21 = p2.x - p1.x;
var dY12 = p1.y - p2.y;
var D = dY12 * (p0.x - p2.x) + dX21 * (p0.y - p2.y);
var sa = dY12 * dXa + dX21 * dYa;
var sb = dY12 * dXb + dX21 * dYb;
var sc = dY12 * dXc + dX21 * dYc;
var ta = (p2.y - p0.y) * dXa + (p0.x - p2.x) * dYa;
var tb = (p2.y - p0.y) * dXb + (p0.x - p2.x) * dYb;
var tc = (p2.y - p0.y) * dXc + (p0.x - p2.x) * dYc;
if (D < 0) return ((sa >= 0 && sb >= 0 && sc >= 0) ||
(ta >= 0 && tb >= 0 && tc >= 0) ||
(sa+ta <= D && sb+tb <= D && sc+tc <= D));
return ((sa <= 0 && sb <= 0 && sc <= 0) ||
(ta <= 0 && tb <= 0 && tc <= 0) ||
(sa+ta >= D && sb+tb >= D && sc+tc >= D));
}
var trianglesIntersect4 = function(t0, t1) {
return !(cross2(t0,t1) ||
cross2(t1,t0));
}
Run Code Online (Sandbox Code Playgroud)
我写了上面的小提琴来测试几种不同的技术并比较速度。所有技术都基于三种不同工具的某种组合:
这些就是工具。现在为了确定三角形是否相交,我测试了 3 种方法:
使用线 线相交
还要考虑某些顶点可能接触另一个三角形的一条边的可能性。
http://www.blackpawn.com/texts/pointinpoly/default.html
function SameSide(p1,p2, a,b)
cp1 = CrossProduct(b-a, p1-a)
cp2 = CrossProduct(b-a, p2-a)
if DotProduct(cp1, cp2) >= 0 then return true
else return false
function PointInTriangle(p, a,b,c)
if SameSide(p,a, b,c) and SameSide(p,b, a,c)
and SameSide(p,c, a,b) then return true
else return false
Run Code Online (Sandbox Code Playgroud)
或者查看此链接并向下滚动
http://compsci.ca/v3/viewtopic.php?t=6034
| 归档时间: |
|
| 查看次数: |
19523 次 |
| 最近记录: |