sai*_*eth 6 apache-spark apache-spark-sql pyspark
我是 pyspark 的新手。我试图了解如何访问具有多层嵌套结构和数组的镶木地板文件。我需要用 null 替换数据帧(具有嵌套模式)中的某些值,我已经看到这个解决方案它可以很好地处理结构,但不确定它如何处理数组。
我的架构是这样的
|-- unitOfMeasure: struct
| |-- raw: struct
| | |-- id: string
| | |-- codingSystemId: string
| | |-- display: string
| |-- standard: struct
| | |-- id: string
| | |-- codingSystemId: string
|-- Id: string
|-- actions: array
| |-- element: struct
| | |-- action: string
| | |-- actionDate: string
| | |-- actor: struct
| | | |-- actorId: string
| | | |-- aliases: array
| | | | |-- element: struct
| | | | | |-- value: string
| | | | | |-- type: string
| | | | | |-- assigningAuthority: string
| | | |-- fullName: string
Run Code Online (Sandbox Code Playgroud)
我想做的是替换unitOfMeasure.raw.id为 null 并替换actions.element.action为 null 并actions.element.actor.aliases.element.value替换为 null 保持数据框的其余部分不变。
有什么办法可以实现这个目标吗?
对于数组列,与结构体字段相比有点复杂。一种选择是将数组分解为新列,以便您可以访问和更新嵌套结构。更新后,您必须重建初始数组列。
transform但我更喜欢使用Spark >=2.4 引入的高阶函数这是一个示例:
输入DF:
|-- actions: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- action: string (nullable = true)
| | |-- actionDate: string (nullable = true)
| | |-- actor: struct (nullable = true)
| | | |-- actorId: long (nullable = true)
| | | |-- aliases: array (nullable = true)
| | | | |-- element: struct (containsNull = true)
| | | | | |-- assigningAuthority: string (nullable = true)
| | | | | |-- type: string (nullable = true)
| | | | | |-- value: string (nullable = true)
| | | |-- fullName: string (nullable = true)
+--------------------------------------------------------------+
|actions |
+--------------------------------------------------------------+
|[[action_name1, 2019-12-08, [2, [[aa, t1, v1]], full_name1]]] |
|[[action_name2, 2019-12-09, [3, [[aaa, t2, v2]], full_name2]]]|
+--------------------------------------------------------------+
Run Code Online (Sandbox Code Playgroud)
我们传递一个 lambda 函数来transfrom选择所有结构体字段并替换actions.actionand actions.actor.aliases.valueby null。
transform_expr = """transform (actions, x ->
struct(null as action,
x.actionDate as actionDate,
struct(x.actor.actorId as actorId,
transform(x.actor.aliases, y ->
struct(null as value,
y.type as type,
y.assigningAuthority as assigningAuthority)
) as aliases,
x.actor.fullName as fullName
) as actor
))"""
df.withColumn("actions", expr(transform_expr)).show(truncate=False)
Run Code Online (Sandbox Code Playgroud)
输出DF:
+------------------------------------------------+
|actions |
+------------------------------------------------+
|[[, 2019-12-08, [2, [[, t1, aa]], full_name1]]] |
|[[, 2019-12-09, [3, [[, t2, aaa]], full_name2]]]|
+------------------------------------------------+
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2534 次 |
| 最近记录: |