我有一个SVG我试图用animejs动画.
基本上它是一个选择路径图.
我设法制作动画,但结果是错误的.
我要这个:
var lineDrawing = anime({
targets: 'path',
strokeDashoffset: [anime.setDashoffset, 0],
easing: 'easeInOutCubic',
duration: 4000,
begin: function(anim) {
document.querySelector('path').setAttribute("stroke", "#4a56f2");
document.querySelector('path').setAttribute("fill", "none");
},
complete: function(anim) {
},
autoplay: false
});
document.querySelector('.play-drawing').onclick = lineDrawing.restart;Run Code Online (Sandbox Code Playgroud)
body {
margin: 20px;
font-family: 'Lato';
font-weight: 300;
font-size: 1.2em;
}
#anime-demo {
position: relative;
}
svg {
padding: 10px;
}
button {
background: orange;
color: white;
margin: 5px;
padding: 10px;
border-radius: 4px;
font-family: 'Lato';
cursor: pointer;
border: none;
outline: none;
}
button:hover {
background: …Run Code Online (Sandbox Code Playgroud)这可能听起来像一个noob问题,但我坚持使用它,因为Python不是我最好的语言之一.
我有一个html页面,里面有一个表格,我想在其中显示一个pandas数据帧.最好的方法是什么?使用pandasdataframe.to_html?
PY
from flask import Flask;
import pandas as pd;
from pandas import DataFrame, read_csv;
file = r'C:\Users\myuser\Desktop\Test.csv'
df = pd.read_csv(file)
df.to_html(header="true", table_id="table")
Run Code Online (Sandbox Code Playgroud)
HTML
<div class="table_entrances" style="overflow-x: auto;">
<table id="table">
<thead></thead>
<tr></tr>
</table>
</div>
Run Code Online (Sandbox Code Playgroud) 我正在运行以下代码-
import json
addrsfile =
open("C:\\Users\file.json",
"r")
addrJson = json.loads(addrsfile.read())
addrsfile.close()
if addrJson:
print("yes")
Run Code Online (Sandbox Code Playgroud)
但是给我以下错误-
import json
addrsfile =
open("C:\\Users\file.json",
"r")
addrJson = json.loads(addrsfile.read())
addrsfile.close()
if addrJson:
print("yes")
Run Code Online (Sandbox Code Playgroud)
有人帮我吗?
JSON文件就像-
{"name": "XYZ", "address": "54.7168,94.0215", "country_of_residence": "PQR", "countries": "LMN;PQRST", "date": "28-AUG-2008", "type": null}
{"name": "OLMS", "address": null, "country_of_residence": null, "countries": "Not identified;No", "date": "23-FEB-2017", "type": null}
Run Code Online (Sandbox Code Playgroud) 我有一个pandas数据框定义为:
A B SUM_C
1 1 10
1 2 20
Run Code Online (Sandbox Code Playgroud)
我想做一个SUM_C的累积和,并将其作为新列添加到同一个数据帧.换句话说,我的最终目标是拥有如下所示的数据框:
A B SUM_C CUMSUM_C
1 1 10 10
1 2 20 30
Run Code Online (Sandbox Code Playgroud)
在group()中使用pandas中的cumsum显示了生成新数据帧的可能性,其中列名SUM_C被累积和替换.但是,我的问题是将累积和作为新列添加到现有数据框中.
谢谢
我参考了阿穆勒的词云和其他一些词云。事情是这样的:
\n\n#!c:/Python27/python.exe\n# coding: UTF-8\nfrom os import path\nfrom wordcloud import WordCloud\nimport MeCab as mc\n\nd = path.dirname("C:\\Users\\BobLeponge\\Desktop\\jpn\\JPNTEXT.txt")\ntext = open(path.join(d, \'JPNTEXT.txt\')).read()\ntext = text.decode("utf-8")\n\ndef mecab_analysis(text):\n t = mc.Tagger(\'-Ochasen -d/usr/local/Cellar/mecab/0.996/lib/mecab/dic/mecab-ipadic-neologd/\')\n enc_text = text.encode(\'utf-8\')\n node = t.parseToNode(enc_text)\n output = []\n while(node):\n if node.surface != "":\n word_type = node.feature.split(",")[0]\n if word_type in ["\xe5\xbd\xa2\xe5\xae\xb9\xe8\xa9\x9e", "\xe5\x8b\x95\xe8\xa9\x9e","\xe5\x90\x8d\xe8\xa9\x9e", "\xe5\x89\xaf\xe8\xa9\x9e"]:\n output.append(node.surface)\n node = node.next\n if node is None:\n break\n return output\n\ndef create_wordcloud(text):\n fpath = "C:\\WINDOWS\\Fonts\\NotoSansMonoCJKjp-Regular.otf"\n stop_words = [ u\'\xe3\x81\xa6\xe3\x82\x8b\', u\'\xe3\x81\x84\xe3\x82\x8b\', u\'\xe3\x81\xaa\xe3\x82\x8b\', u\'\xe3\x82\x8c\xe3\x82\x8b\', u\'\xe3\x81\x99\xe3\x82\x8b\', u\'\xe3\x81\x82\xe3\x82\x8b\', u\'\xe3\x81\x93\xe3\x81\xa8\', u\'\xe3\x81\x93\xe3\x82\x8c\', u\'\xe3\x81\x95\xe3\x82\x93\', u\'\xe3\x81\x97\xe3\x81\xa6\', \\\n u\'\xe3\x81\x8f\xe3\x82\x8c\xe3\x82\x8b\', u\'\xe3\x82\x84\xe3\x82\x8b\', …Run Code Online (Sandbox Code Playgroud) 我知道这是一件非常糟糕的事情,但我注意到使用 keras mobilenet 有一些奇怪的事情:
我使用相同的数据进行训练和验证集:
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(IM_WIDTH, IM_HEIGHT),
batch_size=batch_size,
class_mode = "categorical"
)
validation_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(IM_WIDTH, IM_HEIGHT),
class_mode = "categorical"
)
Run Code Online (Sandbox Code Playgroud)
但我没有得到相同的准确度!
epoch 30/30 - loss: 0.3485 - acc: 0.8938 - val_loss: 1.7545 - val_acc: 0.4406
与验证集相比,我似乎过度拟合了训练集......但它们应该是相同的!这怎么可能?
假设我想run_forever()在一个线程中运行一个名为的函数,但仍然可以通过按Ctrl+ 来"停止" C.我已经看到了使用StoppableThread子类的方法threading.Thread,但这些似乎涉及将目标函数"复制"到该子类中.我想保持功能"它在哪里".
请考虑以下示例:
import time
import threading
def run_forever(): # An externally defined function which runs indefinitely
while True:
print("Hello, world!")
time.sleep(1)
class StoppableThread(threading.Thread):
"""Thread class with a stop() method. The thread itself has to check
regularly for the stopped() condition."""
def __init__(self, *args, **kwargs):
super(StoppableThread, self).__init__(*args, **kwargs)
self._stop = threading.Event()
def stop(self):
self._stop.set()
def stopped(self):
return self._stop.isSet()
def run(self):
while not self.stopped():
run_forever() # This doesn't work
# print("Hello, …Run Code Online (Sandbox Code Playgroud) 如何像我们在 keras 中所做的那样使用模型图保存张量流模型。我们可以保存整个模型(权重和图)并稍后导入,而不是在预测文件中再次定义整个图
在凯拉斯:
checkpoint = ModelCheckpoint('RightLane-{epoch:03d}.h5',monitor='val_loss', verbose=0, save_best_only=False, mode='auto')
Run Code Online (Sandbox Code Playgroud)
将给出一个我们可以用于预测的 h5 文件
model = load_model("RightLane-030.h5")
Run Code Online (Sandbox Code Playgroud)
如何在本机张量流中做同样的事情
Day_Date,timeofday_desc,Timeofday_hour,Timeofday_minute,Timeofday_second,value
2017-12-18,12:21:02 AM,0,21,2,“1.779209040E+08”
2017-12-19,12:21:02 AM,0,21,2,“1.779209040E+08”
2017-12-20,12:30:52 AM,0,30,52,“1.779209040E+08”
2017-12-21,12:30:52 AM,0,30,52,“1.779209040E+08”
2017-12-22,12:47:10 AM,0,47,10,“1.779209040E+08”
2017-12-23,12:47:10 AM,0,47,10,“1.779209040E+08”
2017-12-24,02:46:59 AM,2,46,59,“1.779209040E+08”
2017-12-25,02:46:59 AM,2,46,59,“1.779209040E+08”
2017-12-26,03:10:27 AM,3,10,27,“1.779209040E+08”
2017-12-27,03:10:27 AM,3,10,27,“1.779209040E+08”
2017-12-28,03:52:08 AM,3,52,8,“1.779209040E+08”
Run Code Online (Sandbox Code Playgroud)
我正在尝试将value列转换为177920904
val df1 = df.withColumn("s", 'value.cast("Decimal(10,4)")).drop("value").withColumnRenamed("s", "value")
Run Code Online (Sandbox Code Playgroud)
还尝试将值转换为Float, Double。始终将 null 作为输出
df1.select("value").show()
+-----------+
| value |
+-----------+
| null|
| null|
| null|
| null|
| null|
| null|
| null|
| null|
Run Code Online (Sandbox Code Playgroud)
df.printSchema
root
|-- Day_Date: string (nullable = true)
|-- timeofday_desc: string (nullable = true)
|-- Timeofday_hour: string (nullable …Run Code Online (Sandbox Code Playgroud) python ×7
dataframe ×2
keras ×2
pandas ×2
tensorflow ×2
anime.js ×1
apache-spark ×1
atom-editor ×1
cumsum ×1
flask ×1
html ×1
javascript ×1
json ×1
pycharm ×1
python-3.x ×1
scala ×1
spark-shell ×1
svg ×1
svg-animate ×1
utf-8 ×1
word-cloud ×1