我正在尝试使用 Keras 和 mnist 数据集冻结预测模型中某个层的权重,但它不起作用。代码是这样的:
from keras.layers import Dense, Flatten
from keras.utils import to_categorical
from keras.models import Sequential, load_model
from keras.datasets import mnist
from keras.losses import categorical_crossentropy
import numpy as np
def load_data():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)
return x_train, y_train, x_test, y_test
def run():
x_train, y_train, x_test, y_test = load_data()
model = Sequential([Flatten(input_shape=(28, 28)),
Dense(300, name='dense1', activation='relu'),
Dense(100, …Run Code Online (Sandbox Code Playgroud) 我正在尝试在春季使用 mongoDB。当我尝试使用findUserByUserName如下函数查询用户时:
@Repository("usersDao")
public class UserDaoImpl implements UserDao {
@Autowired
MongoTemplate mongoTemplate;
@Override
public void saveUser(User user) {
mongoTemplate.save(user);
}
@Override
public User findUserByUserName(String userName)
{
return mongoTemplate.findOne(
new Query(Criteria.where("_id").is(userName)), User.class);
}
}
Run Code Online (Sandbox Code Playgroud)
它会抛出这样的异常:
org.springframework.data.mapping.MappingException: Parameter org.springframework.data.mapping.PreferredConstructor$Parameter@d1c79025 does not have a name!
at org.springframework.data.mapping.model.PersistentEntityParameterValueProvider.getParameterValue(PersistentEntityParameterValueProvider.java:61) ~[spring-data-commons-2.0.6.RELEASE.jar:2.0.6.RELEASE]
at org.springframework.data.mapping.model.SpELExpressionParameterValueProvider.getParameterValue(SpELExpressionParameterValueProvider.java:49) ~[spring-data-commons-2.0.6.RELEASE.jar:2.0.6.RELEASE]
at org.springframework.data.convert.ClassGeneratingEntityInstantiator$EntityInstantiatorAdapter.extractInvocationArguments(ClassGeneratingEntityInstantiator.java:248) ~[spring-data-commons-2.0.6.RELEASE.jar:2.0.6.RELEASE]
at org.springframework.data.convert.ClassGeneratingEntityInstantiator$EntityInstantiatorAdapter.createInstance(ClassGeneratingEntityInstantiator.java:221) ~[spring-data-commons-2.0.6.RELEASE.jar:2.0.6.RELEASE]
at org.springframework.data.convert.ClassGeneratingEntityInstantiator.createInstance(ClassGeneratingEntityInstantiator.java:86) ~[spring-data-commons-2.0.6.RELEASE.jar:2.0.6.RELEASE]
at org.springframework.data.mongodb.core.convert.MappingMongoConverter.read(MappingMongoConverter.java:273) ~[spring-data-mongodb-2.0.6.RELEASE.jar:2.0.6.RELEASE]
at org.springframework.data.mongodb.core.convert.MappingMongoConverter.read(MappingMongoConverter.java:253) ~[spring-data-mongodb-2.0.6.RELEASE.jar:2.0.6.RELEASE]
at org.springframework.data.mongodb.core.convert.MappingMongoConverter.readMap(MappingMongoConverter.java:1047) ~[spring-data-mongodb-2.0.6.RELEASE.jar:2.0.6.RELEASE]
at org.springframework.data.mongodb.core.convert.MappingMongoConverter.read(MappingMongoConverter.java:233) ~[spring-data-mongodb-2.0.6.RELEASE.jar:2.0.6.RELEASE]
at org.springframework.data.mongodb.core.convert.MappingMongoConverter.readValue(MappingMongoConverter.java:1388) ~[spring-data-mongodb-2.0.6.RELEASE.jar:2.0.6.RELEASE]
at org.springframework.data.mongodb.core.convert.MappingMongoConverter$MongoDbPropertyValueProvider.getPropertyValue(MappingMongoConverter.java:1335) ~[spring-data-mongodb-2.0.6.RELEASE.jar:2.0.6.RELEASE]
at org.springframework.data.mongodb.core.convert.MappingMongoConverter.readProperties(MappingMongoConverter.java:335) ~[spring-data-mongodb-2.0.6.RELEASE.jar:2.0.6.RELEASE] …Run Code Online (Sandbox Code Playgroud) 我是Keras的初学者,只写一个玩具示例。它报告一个TypeError。代码和错误如下:
码:
inputs = keras.Input(shape=(3, ))
cell = keras.layers.SimpleRNNCell(units=5, activation='softmax')
label = keras.layers.RNN(cell)(inputs)
model = keras.models.Model(inputs=inputs, outputs=label)
model.compile(optimizer='rmsprop',
loss='mae',
metrics=['acc'])
data = np.array([[1, 2, 3], [3, 4, 5]])
labels = np.array([1, 2])
model.fit(x=data, y=labels)
Run Code Online (Sandbox Code Playgroud)
错误:
Traceback (most recent call last):
File "/Users/david/Documents/code/python/Tensorflow/test.py", line 27, in <module>
run()
File "/Users/david/Documents/code/python/Tensorflow/test.py", line 21, in run
label = keras.layers.RNN(cell)(inputs)
File "/Users/david/anaconda3/lib/python3.6/site-packages/tensorflow/python/keras/layers/recurrent.py", line 619, in __call__
...
File "/Users/david/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/init_ops.py", line 473, in __call__
scale /= max(1., (fan_in + fan_out) / 2.)
TypeError: …Run Code Online (Sandbox Code Playgroud) 假设向量\theta是神经网络中的所有参数,我想知道如何\theta在 pytorch 中计算Hessian矩阵。
假设网络如下:
class Net(Module):
def __init__(self, h, w):
super(Net, self).__init__()
self.c1 = torch.nn.Conv2d(1, 32, 3, 1, 1)
self.f2 = torch.nn.Linear(32 * h * w, 5)
def forward(self, x):
x = self.c1(x)
x = x.view(x.size(0), -1)
x = self.f2(x)
return x
Run Code Online (Sandbox Code Playgroud)
我知道可以通过调用torch.autograd.grad()两次来计算二阶导数,但是pytorch中的参数是由 组织的net.parameters(),我不知道如何计算所有参数的hessian。
我尝试torch.autograd.functional.hessian()在 pytorch 1.5 中使用如下:
import torch
import numpy as np
from torch.nn import Module
import torch.nn.functional as F
class Net(Module):
def __init__(self, h, w):
super(Net, self).__init__() …Run Code Online (Sandbox Code Playgroud) /proc/stat,HardwarePropertiesManager"android.permission.DEVICE_POWER"由于该权限仅授予系统应用程序,因此无法在正常应用程序中使用。我正在尝试使用该包matplotlib.animation在 PyCharm 中绘制动画。但是,PyCharm 仅在 PNG 图形中显示动画的第一帧。
动画是关于一个移动的矩形,python版本是2.7.14,代码在这里:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib import animation
x = [0, 1, 2]
y = [0, 1, 2]
yaw = [0.0, 0.5, 1.3]
fig = plt.figure()
plt.axis('equal')
plt.grid()
ax = fig.add_subplot(111)
ax.set_xlim(-10, 10)
ax.set_ylim(-10, 10)
patch = patches.Rectangle((0, 0), 0, 0, fc='y')
def init():
ax.add_patch(patch)
return patch,
def animate(i):
patch.set_width(1.2)
patch.set_height(1.0)
patch.set_xy([x[i], y[i]])
patch._angle = -np.rad2deg(yaw[i])
return patch,
anim = animation.FuncAnimation(fig, animate,
init_func=init, …Run Code Online (Sandbox Code Playgroud) keras ×2
python ×2
tensorflow ×2
android ×1
animation ×1
hessian ×1
java ×1
matplotlib ×1
mnist ×1
mongodb ×1
pycharm ×1
pytorch ×1
rnn ×1
spring ×1
spring-boot ×1