给出两个排序的数组:A和B.阵列的大小A是La与阵列的大小B是Lb.如何找到A和B?
如果La比大得多Lb,那么交点查找算法会有什么不同吗?
我正在尝试测试一个非常简单的简短程序,如下所示
import numpy as np
import tensorflow as tf
flags = tf.app.flags
FLAGS = flags.FLAGS
import tensorvision.train as train
import tensorvision.utils as utils
flags.DEFINE_string('name', None,
'Append a name Tag to run.')
flags.DEFINE_string('hypes', 'hypes/medseg.json',
'File storing model parameters.')
if __name__ == '__main__':
tf.app.run()
Run Code Online (Sandbox Code Playgroud)
但是,运行该程序会出现以下错误消息,
Traceback (most recent call last):
File "train.py", line 43, in <module>
tf.app.run()
File "/devl/tensorflow/tf_0.12/lib/python3.4/site- packages/tensorflow/python/platform/app.py", line 39, in run
main = main or sys.modules['__main__'].main
AttributeError: 'module' object has no attribute 'main'
Run Code Online (Sandbox Code Playgroud) 运行涉及以下函数的python程序时,image[x,y] = 0 会出现以下错误消息.这意味着什么以及如何解决它?谢谢.
警告
VisibleDeprecationWarning: using a non-integer number instead of an integer
will result in an error in the future
image[x,y] = 0
Illegal instruction (core dumped)
Run Code Online (Sandbox Code Playgroud)
码
def create_image_and_label(nx,ny):
x = np.floor(np.random.rand(1)[0]*nx)
y = np.floor(np.random.rand(1)[0]*ny)
image = np.ones((nx,ny))
label = np.ones((nx,ny))
image[x,y] = 0
image_distance = ndimage.morphology.distance_transform_edt(image)
r = np.random.rand(1)[0]*(r_max-r_min)+r_min
plateau = np.random.rand(1)[0]*(plateau_max-plateau_min)+plateau_min
label[image_distance <= r] = 0
label[image_distance > r] = 1
label = (1 - label)
image_distance[image_distance <= r] = 0
image_distance[image_distance > r] …Run Code Online (Sandbox Code Playgroud) 在Java项目中,有两个java文件有main方法.这两个java文件的绝对路径是:
C:\Desktop\project1\src\com\pre\moveposition1.java
Run Code Online (Sandbox Code Playgroud)
和
C:\Desktop\project1\src\com\pre\moveposition2.java
Run Code Online (Sandbox Code Playgroud)
当我尝试在"运行配置"中设置"主类"参数时,我应该设置什么?

在与对象检测和语义分割相关的深度学习实现中,我已经看到使用sigmoid或softmax的输出层.我不是很清楚何时使用哪个?在我看来,他们俩都可以支持这些任务.这个选择有什么指导方针吗?
给定一个向量a = [1,2,3.2,4,5]和一个元素x = 3在向量a中,如何找到大于x的确切条目?
Tensorflow有多个版本,如果我想在Anaconda中安装特定版本,我应该使用哪个命令.
在一个现有conda环境中,python 是3.8. 是否可以将这个特定环境的 python 版本从3.8to3.6或降级3.7?
我正在使用Keras提供的conv1d层为序列数据构建预测模型。我就是这样
model= Sequential()
model.add(Conv1D(60,32, strides=1, activation='relu',padding='causal',input_shape=(None,64,1)))
model.add(Conv1D(80,10, strides=1, activation='relu',padding='causal'))
model.add(Dropout(0.25))
model.add(Conv1D(100,5, strides=1, activation='relu',padding='causal'))
model.add(MaxPooling1D(1))
model.add(Dropout(0.25))
model.add(Dense(300,activation='relu'))
model.add(Dense(1,activation='relu'))
print(model.summary())
Run Code Online (Sandbox Code Playgroud)
但是,调试信息有
Traceback (most recent call last):
File "processing_2a_1.py", line 96, in <module>
model.add(Conv1D(60,32, strides=1, activation='relu',padding='causal',input_shape=(None,64,1)))
File "build/bdist.linux-x86_64/egg/keras/models.py", line 442, in add
File "build/bdist.linux-x86_64/egg/keras/engine/topology.py", line 558, in __call__
File "build/bdist.linux-x86_64/egg/keras/engine/topology.py", line 457, in assert_input_compatibility
ValueError: Input 0 is incompatible with layer conv1d_1: expected ndim=3, found ndim=4
Run Code Online (Sandbox Code Playgroud)
训练数据和验证数据的形状如下
('X_train shape ', (1496000, 64, 1))
('Y_train shape ', (1496000, 1))
('X_val shape ', (374000, 64, …Run Code Online (Sandbox Code Playgroud) machine-learning neural-network deep-learning conv-neural-network keras