我的图像如下.它是2579*2388像素.让我们假设它的左下角是0,0.从该图像我想创建如下的多个图像并将它们保存在工作文件夹中.每张图片的大小为100*100像素.每个图像将通过它的左下角坐标保存.
最快的方法是什么?是否有任何R包可以很快完成?
据我所知,在当前图像的情况下,它会将其分成大约257*238个图像.但我有足够的磁盘空间,我需要每个图像来执行文本检测.

我正在使用 Google Colab python 3.x,我有一个如下所示的数据框。我想查看每一行和每一列的所有单元格。我怎样才能做到这一点?我试过了,pd.set_option('display.max_columns', 3000)但没有用。
# importing pandas as pd
import pandas as pd
# dictionary of lists
dict = {'name':["a1", "b2", "c2", "d3"],
'degree': ["We explained to customer how correct fees (100) were charged. Account balance was too low", "customer was late in paying fees and we have to charge fine", "customer's credit score was too low and we have to charge higher interest rate", "customer complained a lot and didnt listen to our explanation. I …Run Code Online (Sandbox Code Playgroud) 我有一堆随机文件,我将在每个文件上运行LINUX-file命令.Linux屏幕如下
m7% file date-file.csv
date-file.csv: ASCII text, with CRLF line terminators
m7% file image-file.JPG
image-file.JPG: JPEG image data, EXIF standard
Run Code Online (Sandbox Code Playgroud)
只有当Linux说该文件是文本文件时,我才想运行一个遍历该文件的R脚本并查找所有列名.在上面的屏幕中,我想只在第一个文件上运行R脚本.我怎么能实现这个条件处理?
有什么办法可以从R运行Linux命令吗?如果我可以这样做,那么我可以分析Linux命令给出的输出,看它是否包含文本,然后我可以根据需要执行R脚本.
我很难实现这一点,任何帮助表示赞赏
我有一个data.frame列,其值如下所示.我想使用每个单元格并创建两个列 - num1和num2,使得num1 =" - "之前的所有内容,num2 =" - "和"."之间的所有内容.
我想用gregexpr功能,如图所示这里,写一个for循环,以每行迭代.有更快的方法吗?
60-150.PNG
300-12.PNG
employee <- c('60-150.PNG','300-12.PNG')
employ.data <- data.frame(employee)
Run Code Online (Sandbox Code Playgroud) 从页面我得到以下代码:
from numpy import array
from keras.preprocessing.text import one_hot
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers.embeddings import Embedding
# define documents
docs = ['Well done!',
'Good work',
'Great effort',
'nice work',
'Excellent!',
'Weak',
'Poor effort!',
'not good',
'poor work',
'Could have done better.']
# define class labels
labels = array([1,1,1,1,1,0,0,0,0,0])
# integer encode the documents
vocab_size = 50
encoded_docs = [one_hot(d, vocab_size) for d in docs]
print(encoded_docs) …Run Code Online (Sandbox Code Playgroud) 我正在探索句子转换器并发现了此页面。它展示了如何训练我们的自定义数据。但我不确定如何预测。如果有两个新句子,例如 1)这是第三个示例,2)这是第三个示例。我怎样才能预测这些句子的相似程度?
from sentence_transformers import SentenceTransformer, InputExample, losses
from torch.utils.data import DataLoader
#Define the model. Either from scratch of by loading a pre-trained model
model = SentenceTransformer('distilbert-base-nli-mean-tokens')
#Define your train examples. You need more than just two examples...
train_examples = [InputExample(texts=['My first sentence', 'My second sentence'], label=0.8),
InputExample(texts=['Another pair', 'Unrelated sentence'], label=0.3)]
#Define your train dataset, the dataloader and the train loss
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=16)
train_loss = losses.CosineSimilarityLoss(model)
#Tune the model
model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=1, warmup_steps=100)
Run Code Online (Sandbox Code Playgroud)
----------------------------更新1 …
python nlp sentence sentence-similarity huggingface-transformers
我正在为分类问题训练 Huggingface Longformer 并得到以下输出。
我很困惑Total optimization steps。由于我有 7000 个训练数据点和 5 个时期,并且Total train batch size (w. parallel, distributed & accumulation) = 64,我不应该获取
7000*5/64步骤吗?那到了546.875?为什么显示 Total optimization steps = 545
为什么在下面的输出中,有 16 个Input ids are automatically padded from 1500 to 1536 to be a multiple of config.attention_window: 512步骤 [ 23/545 14:24 < 5:58:16, 0.02 it/s, Epoch 0.20/5]?这些步骤是什么?
=================================================== ========
***** Running training *****
Num examples = 7000
Num Epochs = 5
Instantaneous batch …Run Code Online (Sandbox Code Playgroud) 当我在下面运行时出现错误
month info startTime <- dmy(raw$Start.date)
Run Code Online (Sandbox Code Playgroud)
parse_date_time(dates, orders, quiet = quiet, tz = tz, locale = locale, 中的错误:'nzchar()' 需要一个字符向量
来自上述网页的代码需要一些调整。一个人必须在他的电脑上复制文件“unimelb_training.csv”。该文件位于http://www.kaggle.com/c/unimelb/data
我已经联系了作者。他无法重现错误,因此无法提供帮助。他建议我提供上述网页的链接,而不是复制粘贴整个代码。本书网站是http://appliedpredictivemodeling.com/
请帮助...谢谢
我有一个矩阵如下
B = matrix(
c(2, 4, 3, 1, 5, 7),
nrow=3,
ncol=2)
B # B has 3 rows and 2 columns
# [,1] [,2]
#[1,] 2 1
#[2,] 4 5
#[3,] 3 7
Run Code Online (Sandbox Code Playgroud)
我想创建一个包含 3 列的 data.frame:行号、列号和来自上述矩阵的实际值。我正在考虑编写 2 个 for 循环。有没有更有效的方法来做到这一点?
我想要的输出(我只显示下面的前 2 行)
rownum columnnum value
1 1 2
1 2 1
Run Code Online (Sandbox Code Playgroud) 我收到与此非常相似的错误。
我的错误如下:
-----------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-85-5a223a19e3f5> in <module>
8 save_run = 'Yes',
9 return_progress_dict = 'Yes',
---> 10 hide_text = 'No')
<ipython-input-84-023bc49b2138> in train_CNN(model, optimizer, train_dataloader, epochs, run_number, val_dataloader, save_run, return_progress_dict, hide_text)
63 print(labels[0].dtype)
64 print("------------")
---> 65 loss = F.cross_entropy(probs, labels)
66
67 total_loss += loss.item()
/usr/local/anaconda/lib/python3.6/site-packages/torch/nn/functional.py in cross_entropy(input, target, weight, size_average, ignore_index, reduce, reduction, label_smoothing)
2844 if size_average is not None or reduce is not None:
2845 reduction = _Reduction.legacy_get_string(size_average, reduce)
-> 2846 …Run Code Online (Sandbox Code Playgroud)