我选择了这个数据集:https : //www.kaggle.com/karangadiya/fifa19
现在,我想将此 CSV 文件转换为联合数据集以适应模型。
Tensorflow 提供了有关联邦学习的教程,其中使用了预定义的数据集。但是,我的问题是如何将此特定数据集用于联合学习场景?
我是联邦学习的新手,刚刚了解 TensorFlow Federated TFF 框架。我脑子里有一些问题,如果有人能澄清这些问题,我将不胜感激:
提前致谢
尝试实现研究论文: https://ieeexplore.ieee.org/document/9479786/ 使用架构训练单调网络:
class Model(nn.Module):
def __init__(self, q, s):
self.layer_s_list = [nn.Linear(5, s) for _ in range(q)]
self.inv_w, self.inv_b = self.get_layer_weights()
def forward(self, x):
# print(inv_w[0].shape, inv_b[0].shape)
output_lst = []
for layer in self.layer_s_list:
v, id = torch.max(layer(x), 1)
output_lst.append(v.detach().numpy())
output_lst = np.array(output_lst)
output_lst = torch.from_numpy(output_lst)
out, _ = torch.min(output_lst, 0)
allo_out = F.softmax(out)
pay_out = nn.ReLU(inplace = True)(out)
inv_out_lst = []
for q_idx in range(len(self.inv_w)):
# print(inv_w[q_idx].shape, pay_out.shape, inv_b[q_idx].shape)
y, _ = torch.min(torch.linalg.pinv(self.inv_w[q_idx]) * (pay_out - self.inv_b[q_idx]), 0)
inv_out_lst.append(y.detach().numpy()) …Run Code Online (Sandbox Code Playgroud) machine-learning neural-network deep-learning data-science federated-learning