Fin*_*fin 9 c c++ x86 bit-manipulation bit-shift
在此之前,这不是我的作业,它是由一本名为"计算机系统程序员的视角"的书给出的实验室(优秀的书btw)
我需要在有符号整数上执行逻辑移位,而不使用以下任何内容:
允许的运营商是:!+〜| >> << ^
到目前为止我尝试了什么?
/*
* logicalShift - shift x to the right by n, using a logical shift
* Can assume that 0 <= n <= 31
* Examples: logicalShift(0x87654321,4) = 0x08765432
* Legal ops: ~ & ^ | + << >>
* Max ops: 20
* Rating: 3
*/
int logicalShift(int x, int n) {
int mask = ~0;
int shiftAmount = 31 + ((~n)+1);//this evaluates to 31 - n on two's complement machines
mask = mask << shiftAmount;
mask = ~mask;//If n equals 0, it means we have negated all bits and hence have mask = 0
x = x >> n;
return x & mask;
}
Run Code Online (Sandbox Code Playgroud)
只要n不等于0就可以正常工作,当它执行此代码时,因为掩码将转为全0并且函数将返回0.
我很欣赏任何正确方向的提示,而不是完整的代码.
同样,这不是一个功课; 实验室作业可在此处公开获取http://csapp.cs.cmu.edu/public/labs.html
PS不重复,不发布涉及转换为无符号然后转移的解决方案.
你可以这样做一个面具:
int mask = 1 << shiftAmount;
mask |= mask - 1;
Run Code Online (Sandbox Code Playgroud)
这与其他方法相比
this approach | other approach
can have 0 bits set : no | yes
can have 32 bits set: yes | no
Run Code Online (Sandbox Code Playgroud)
小智 6
因此,它是有道理也回答一般情况下,在铸允许-因为这里没有显示的代码被编译(GCC 9.2,-O3)用正确的(和快速)操作码(只是一个单一的shr指令,而不是sar)。
此版本也适用于即将推出的int128_t(目前__int128在 GCC、Clang 和 ICC 中)和其他未来类型。如果您被允许使用type_traits并且您的代码将来应该可以正常工作而无需考虑正确的无符号类型,您应该将其用于正确的转换。
#include <type_traits>
template<class T>
inline T logicalShift(T t1, T t2) {
return
static_cast<
typename std::make_unsigned<T>::type
>(t1) >> t2;
}
Run Code Online (Sandbox Code Playgroud)
f(T x, T y) { return logicalShift(x, y); }按照以下汇编器指令(GCC9.2,-O3)将其打包成结果:
f(int, int):
mov eax, edi
mov ecx, esi
shr eax, cl
ret
f(unsigned int, unsigned int):
mov eax, edi
mov ecx, esi
shr eax, cl
ret
f(__int128, __int128):
mov rcx, rdx
mov rax, rdi
mov rdx, rsi
shrd rax, rsi, cl
shr rdx, cl
xor esi, esi
and ecx, 64
cmovne rax, rdx
cmovne rdx, rsi
ret
f(unsigned __int128, unsigned __int128):
mov rcx, rdx
mov rax, rdi
mov rdx, rsi
shrd rax, rsi, cl
shr rdx, cl
xor esi, esi
and ecx, 64
cmovne rax, rdx
cmovne rdx, rsi
ret
Run Code Online (Sandbox Code Playgroud)
而T a, b; T c = a >> b;结果:
f(int, int):
mov eax, edi # 32-bit registers
mov ecx, esi
sar eax, cl # lower 8-bit of cx register
ret
f(long, long):
mov rax, rdi # 64-bit registers
mov ecx, esi
sar rax, cl
ret
f(unsigned int, unsigned int):
mov eax, edi
mov ecx, esi
shr eax, cl
ret
f(__int128, __int128):
mov rcx, rdx
mov rdx, rsi
mov rax, rdi
sar rdx, cl
shrd rax, rsi, cl
mov rsi, rdx
sar rsi, 63
and ecx, 64
cmovne rax, rdx
cmovne rdx, rsi
ret
Run Code Online (Sandbox Code Playgroud)
我们看到,差异主要只是shr而不是sar(还有一些 __int128)。什么代码可以更快?
(减少指令设置为 ~ & ^ | + << >>)
SAL, SHL)@Fingolfin 最初的想法很不错。但是我们的处理器不会做我们首先想到的int mask = ~0 << nfor n >= 32;,但为什么呢?
C++ 标准(草案 N4713, 8.5.7, 2nd)表示对于 <<:
的值
E1 << E2是E1左移的E2位位置;空出的位用零填充。如果E1具有无符号类型,则结果的值是E1 × 2^E2,以比结果类型中可表示的最大值大 1 的模数减少。否则,如果E1具有有符号类型和非负值,并且E1 × 2^E2可以用结果类型的相应无符号类型表示,则该值转换为结果类型,即为结果值;否则,行为是 undefined。
听起来像(E1 << E2) % (UINTxx_MAX + 1),我们只是从右边用 0 填充并用模运算切断前导位。简单明了。
16 位短、32 位整数和 64 位长的汇编代码(GCC 9.2,-O3)是:
g(short, short):
movsx eax, di # 16-bit to 32-bit register
mov ecx, esi
sal eax, cl # 1st is 32-bit, 2nd is 8-bit register
ret
g(int, int):
mov eax, edi # 32-bit registers
mov ecx, esi
sal eax, cl # 1st is 32-bit, 2nd is 8-bit register
ret
g(long, long):
mov rax, rdi # 64-bit registers
mov ecx, esi
sal rax, cl # 1st is 64-bit, 2nd is 8-bit register
ret
Run Code Online (Sandbox Code Playgroud)
所以,我们讨论了我们从~0 << ifor断言的内容int i = 0; i <= 33; i++,但我们真正得到了什么?
0: 11111111111111111111111111111111
1: 11111111111111111111111111111110
2: 11111111111111111111111111111100
3: 11111111111111111111111111111000
4: 11111111111111111111111111110000
5: 11111111111111111111111111100000
6: 11111111111111111111111111000000
7: 11111111111111111111111110000000
8: 11111111111111111111111100000000
9: 11111111111111111111111000000000
10: 11111111111111111111110000000000
11: 11111111111111111111100000000000
12: 11111111111111111111000000000000
13: 11111111111111111110000000000000
14: 11111111111111111100000000000000
15: 11111111111111111000000000000000
16: 11111111111111110000000000000000
17: 11111111111111100000000000000000
18: 11111111111111000000000000000000
19: 11111111111110000000000000000000
20: 11111111111100000000000000000000
21: 11111111111000000000000000000000
22: 11111111110000000000000000000000
23: 11111111100000000000000000000000
24: 11111111000000000000000000000000
25: 11111110000000000000000000000000
26: 11111100000000000000000000000000
27: 11111000000000000000000000000000
28: 11110000000000000000000000000000
29: 11100000000000000000000000000000
30: 11000000000000000000000000000000
31: 10000000000000000000000000000000
32: 11111111111111111111111111111111
33: 11111111111111111111111111111110
Run Code Online (Sandbox Code Playgroud)
我们看到,结果更像是~0 << (i%2^5)。
所以,看看长(长又名。int64_t)案例:(用MSVC编译x86)
0: 1111111111111111111111111111111111111111111111111111111111111111
1: 1111111111111111111111111111111111111111111111111111111111111110
2: 1111111111111111111111111111111111111111111111111111111111111100
3: 1111111111111111111111111111111111111111111111111111111111111000
4: 1111111111111111111111111111111111111111111111111111111111110000
5: 1111111111111111111111111111111111111111111111111111111111100000
6: 1111111111111111111111111111111111111111111111111111111111000000
7: 1111111111111111111111111111111111111111111111111111111110000000
8: 1111111111111111111111111111111111111111111111111111111100000000
9: 1111111111111111111111111111111111111111111111111111111000000000
10: 1111111111111111111111111111111111111111111111111111110000000000
11: 1111111111111111111111111111111111111111111111111111100000000000
12: 1111111111111111111111111111111111111111111111111111000000000000
13: 1111111111111111111111111111111111111111111111111110000000000000
14: 1111111111111111111111111111111111111111111111111100000000000000
15: 1111111111111111111111111111111111111111111111111000000000000000
16: 1111111111111111111111111111111111111111111111110000000000000000
17: 1111111111111111111111111111111111111111111111100000000000000000
18: 1111111111111111111111111111111111111111111111000000000000000000
19: 1111111111111111111111111111111111111111111110000000000000000000
20: 1111111111111111111111111111111111111111111100000000000000000000
21: 1111111111111111111111111111111111111111111000000000000000000000
22: 1111111111111111111111111111111111111111110000000000000000000000
23: 1111111111111111111111111111111111111111100000000000000000000000
24: 1111111111111111111111111111111111111111000000000000000000000000
25: 1111111111111111111111111111111111111110000000000000000000000000
26: 1111111111111111111111111111111111111100000000000000000000000000
27: 1111111111111111111111111111111111111000000000000000000000000000
28: 1111111111111111111111111111111111110000000000000000000000000000
29: 1111111111111111111111111111111111100000000000000000000000000000
30: 1111111111111111111111111111111111000000000000000000000000000000
31: 1111111111111111111111111111111110000000000000000000000000000000
32: 1111111111111111111111111111111100000000000000000000000000000000
33: 1111111111111111111111111111111000000000000000000000000000000000
34: 1111111111111111111111111111110000000000000000000000000000000000
35: 1111111111111111111111111111100000000000000000000000000000000000
36: 1111111111111111111111111111000000000000000000000000000000000000
37: 1111111111111111111111111110000000000000000000000000000000000000
38: 1111111111111111111111111100000000000000000000000000000000000000
39: 1111111111111111111111111000000000000000000000000000000000000000
40: 1111111111111111111111110000000000000000000000000000000000000000
41: 1111111111111111111111100000000000000000000000000000000000000000
42: 1111111111111111111111000000000000000000000000000000000000000000
43: 1111111111111111111110000000000000000000000000000000000000000000
44: 1111111111111111111100000000000000000000000000000000000000000000
45: 1111111111111111111000000000000000000000000000000000000000000000
46: 1111111111111111110000000000000000000000000000000000000000000000
47: 1111111111111111100000000000000000000000000000000000000000000000
48: 1111111111111111000000000000000000000000000000000000000000000000
49: 1111111111111110000000000000000000000000000000000000000000000000
50: 1111111111111100000000000000000000000000000000000000000000000000
51: 1111111111111000000000000000000000000000000000000000000000000000
52: 1111111111110000000000000000000000000000000000000000000000000000
53: 1111111111100000000000000000000000000000000000000000000000000000
54: 1111111111000000000000000000000000000000000000000000000000000000
55: 1111111110000000000000000000000000000000000000000000000000000000
56: 1111111100000000000000000000000000000000000000000000000000000000
57: 1111111000000000000000000000000000000000000000000000000000000000
58: 1111110000000000000000000000000000000000000000000000000000000000
59: 1111100000000000000000000000000000000000000000000000000000000000
60: 1111000000000000000000000000000000000000000000000000000000000000
61: 1110000000000000000000000000000000000000000000000000000000000000
62: 1100000000000000000000000000000000000000000000000000000000000000
63: 1000000000000000000000000000000000000000000000000000000000000000
64: 0000000000000000000000000000000000000000000000000000000000000000
65: 0000000000000000000000000000000000000000000000000000000000000000
Run Code Online (Sandbox Code Playgroud)
繁荣!
(直到 31 在 GCC 中也简称为 31,因为它使用 32 位EAX寄存器用于sal)
但是,此结果仅由编译器创建:
x86 msvc v19.22 , /O2:_x$ = 8 ; size = 8
_y$ = 16 ; size = 8
__int64 g(__int64,__int64) PROC ; g, COMDAT
mov eax, DWORD PTR _x$[esp-4]
mov edx, DWORD PTR _x$[esp]
mov ecx, DWORD PTR _y$[esp-4]
jmp __allshl
__int64 g(__int64,__int64) ENDP
Run Code Online (Sandbox Code Playgroud)
x64 msvc v19.22 , /O2:
x$ = 8
y$ = 16
__int64 g(__int64,__int64) PROC ; g, COMDAT
mov rax, rcx
mov rcx, rdx
shl rax, cl
ret 0
__int64 g(__int64,__int64) ENDP
Run Code Online (Sandbox Code Playgroud)
并且 x64 MSVC 代码显示出与 GCC 9.2 代码相同的行为 -shl而不是sal.
从那时起,我们现在知道处理器本身(英特尔酷睿第 6 代)仅使用cl寄存器的最后一位数字,这取决于用于移位操作的第一个寄存器的长度,即使 C++ 标准另有规定。
所以,这是代码中断的地方。本能地,我会采用 shiftAmount of32 - n并进入上层问题,您已经通过使用 a shiftAmountof避免了这一点31 - n。知道 n 是 0..31,就没有 32 的 shiftAmount。很好。
但是,一方面减少意味着另一方面增加。在mask现在需要在开始-2(我们不转变0b1111,我们转移0b1110):
int logSh3(int x, int n) {
int mask = ~2 + 1;
int shiftAmount = 31 + ((~n) + 1);//this evaluates to 31 - n on two's complement machines
mask = mask << shiftAmount;
mask = ~mask;//If n equals 0, it means we have negated all bits and hence have mask = 0
x = x >> n;
return x & mask;
}
Run Code Online (Sandbox Code Playgroud)
它有效!
上层代码,作为汇编程序(GCC 9.2,-O3):
logSh3(int, int):
mov ecx, 31
mov edx, -2
mov eax, edi
sub ecx, esi
sal edx, cl
mov ecx, esi
not edx
sar eax, cl
and eax, edx
ret
Run Code Online (Sandbox Code Playgroud)
9 说明
int logSh2(int x, int n) {
int shiftAmount = 31 + ((~n) + 1);//this evaluates to 31 - n on two's complement machines
int mask = 1 << shiftAmount;
mask |= mask + ((~1) + 1);
x = x >> n;
return x & mask;
}
Run Code Online (Sandbox Code Playgroud)
logSh2(int, int):
mov ecx, esi
mov r8d, edi
mov edi, -2147483648
shr edi, cl
sar r8d, cl
lea eax, [rdi-1]
or eax, edi
and eax, r8d
ret
Run Code Online (Sandbox Code Playgroud)
8条指令
我们能做得更好吗?
除了左移,我们还可以右移0b1000,将其向后移一并反转。
int logSh4(int x, int n) {
int mask = 0x80000000;
mask = mask >> n;
mask = mask << 1;
mask = ~mask;//If n equals 0, it means we have negated all bits and hence have mask = 0
x = x >> n;
return x & mask;
}
Run Code Online (Sandbox Code Playgroud)
logSh4(int, int):
mov ecx, esi
mov edx, -2147483648
sar edx, cl
sar edi, cl
lea eax, [rdx+rdx]
not eax
and eax, edi
ret
Run Code Online (Sandbox Code Playgroud)
7 指令
更好的方法?
让我们0b0111向右移动,将它向左移动一位并加 1。所以我们省去了相反的事情:
int logSh5(int x, int n) {
int mask = 0x7fffffff;
mask = mask >> n;
mask = (mask << 1) | 1;
x = x >> n;
return x & mask;
}
Run Code Online (Sandbox Code Playgroud)
logSh5(int, int):
mov ecx, esi
mov eax, 2147483647
sar eax, cl
sar edi, cl
lea eax, [rax+1+rax]
and eax, edi
ret
Run Code Online (Sandbox Code Playgroud)
还剩 6 条指令。美好的。(但简单的演员表仍然是实践中的最佳解决方案)
| 归档时间: |
|
| 查看次数: |
6785 次 |
| 最近记录: |