rub*_*ens 26 python slice pandas
我正在hdf = pandas.HDFStore('Survey.h5')通过pandas包处理从h5文件加载的调查数据.在此范围内DataFrame,所有行都是单个调查的结果,而列是单个调查中所有问题的答案.
我的目标是将此数据集缩小到一个较小的数据集,DataFrame仅包括某个问题上具有特定描述答案的行,即此列中的所有相同值.我能够确定具有此条件的所有行的索引值,但我找不到如何删除此行或仅使用这些行创建新的df.
Wou*_*ire 41
In [36]: df
Out[36]:
A B C D
a 0 2 6 0
b 6 1 5 2
c 0 2 6 0
d 9 3 2 2
In [37]: rows
Out[37]: ['a', 'c']
In [38]: df.drop(rows)
Out[38]:
A B C D
b 6 1 5 2
d 9 3 2 2
In [39]: df[~((df.A == 0) & (df.B == 2) & (df.C == 6) & (df.D == 0))]
Out[39]:
A B C D
b 6 1 5 2
d 9 3 2 2
In [40]: df.ix[rows]
Out[40]:
A B C D
a 0 2 6 0
c 0 2 6 0
In [41]: df[((df.A == 0) & (df.B == 2) & (df.C == 6) & (df.D == 0))]
Out[41]:
A B C D
a 0 2 6 0
c 0 2 6 0
Run Code Online (Sandbox Code Playgroud)
如果您已经知道可以使用的索引.loc:
In [12]: df = pd.DataFrame({"a": [1,2,3,4,5], "b": [4,5,6,7,8]})
In [13]: df
Out[13]:
a b
0 1 4
1 2 5
2 3 6
3 4 7
4 5 8
In [14]: df.loc[[0,2,4]]
Out[14]:
a b
0 1 4
2 3 6
4 5 8
In [15]: df.loc[1:3]
Out[15]:
a b
1 2 5
2 3 6
3 4 7
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
56623 次 |
| 最近记录: |