Alb*_*o A 6 c++ opencv disparity-mapping stereo-3d
我一直在尝试使用OpenCV stereoRectifyUncalibrated来纠正和构建一对图像的差异,但是我没有得到很好的结果.我的代码是:
template<class T>
T convertNumber(string& number)
{
    istringstream ss(number);
    T t;
    ss >> t;
    return t;
}
void readPoints(vector<Point2f>& points, string filename)
{
    fstream filest(filename.c_str(), ios::in);
    string line;
    assert(filest != NULL);
    getline(filest, line);
    do{
        int posEsp = line.find_first_of(' ');
        string posX = line.substr(0, posEsp);
        string posY = line.substr(posEsp+1, line.size() - posEsp);
        float X = convertNumber<float>(posX);
        float Y = convertNumber<float>(posY);
        Point2f pnt = Point2f(X, Y);
        points.push_back(pnt);
        getline(filest, line);
    }while(!filest.eof());
    filest.close();
}
void drawKeypointSequence(Mat lFrame, Mat rFrame, vector<KeyPoint>& lKeyp, vector<KeyPoint>& rKeyp)
{
    namedWindow("prevFrame", WINDOW_AUTOSIZE);
    namedWindow("currFrame", WINDOW_AUTOSIZE);
    moveWindow("prevFrame", 0, 300);
    moveWindow("currFrame", 650, 300);
    Mat rFrameAux;
    rFrame.copyTo(rFrameAux);
    Mat lFrameAux;
    lFrame.copyTo(lFrameAux);
    int size = rKeyp.size();
    for(int i=0; i<size; i++)
    {
        vector<KeyPoint> drawRightKeyp;
        vector<KeyPoint> drawleftKeyp;
        drawRightKeyp.push_back(rKeyp[i]);
        drawleftKeyp.push_back(lKeyp[i]);
        cout << rKeyp[i].pt << " <<<>>> " << lKeyp[i].pt << endl;
        drawKeypoints(rFrameAux, drawRightKeyp, rFrameAux, Scalar::all(255), DrawMatchesFlags::DRAW_OVER_OUTIMG);
        drawKeypoints(lFrameAux, drawleftKeyp, lFrameAux, Scalar::all(255), DrawMatchesFlags::DRAW_OVER_OUTIMG);
        imshow("currFrame", rFrameAux);
        imshow("prevFrame", lFrameAux);
        waitKey(0);
    }
    imwrite("RightKeypFrame.jpg", rFrameAux);
    imwrite("LeftKeypFrame.jpg", lFrameAux);
}
int main(int argc, char* argv[])
{
    StereoBM stereo(StereoBM::BASIC_PRESET, 16*5, 21);
    double ndisp = 16*4;
    assert(argc == 5);
    string rightImgFilename(argv[1]);       // Right image (current frame)
    string leftImgFilename(argv[2]);        // Left image (previous frame)
    string rightPointsFilename(argv[3]);    // Right image points file
    string leftPointsFilename(argv[4]);     // Left image points file
    Mat rightFrame = imread(rightImgFilename.c_str(), 0);
    Mat leftFrame = imread(leftImgFilename.c_str(), 0);
    vector<Point2f> rightPoints;
    vector<Point2f> leftPoints;
    vector<KeyPoint> rightKeyp;
    vector<KeyPoint> leftKeyp;
    readPoints(rightPoints, rightPointsFilename);
    readPoints(leftPoints, leftPointsFilename);
    assert(rightPoints.size() == leftPoints.size());
    KeyPoint::convert(rightPoints, rightKeyp);
    KeyPoint::convert(leftPoints, leftKeyp);
    // Desenha os keypoints sequencialmente, de forma a testar a consistência do matching
    drawKeypointSequence(leftFrame, rightFrame, leftKeyp, rightKeyp);
    Mat fundMatrix = findFundamentalMat(leftPoints, rightPoints, CV_FM_8POINT);
    Mat homRight;
    Mat homLeft;
    Mat disp16 = Mat(rightFrame.rows, leftFrame.cols, CV_16S);
    Mat disp8 = Mat(rightFrame.rows, leftFrame.cols, CV_8UC1);
    stereoRectifyUncalibrated(leftPoints, rightPoints, fundMatrix, rightFrame.size(), homLeft, homRight);
    warpPerspective(rightFrame, rightFrame, homRight, rightFrame.size());
    warpPerspective(leftFrame, leftFrame, homLeft, leftFrame.size());
    namedWindow("currFrame", WINDOW_AUTOSIZE);
    namedWindow("prevFrame", WINDOW_AUTOSIZE);
    moveWindow("currFrame", 650, 300);
    moveWindow("prevFrame", 0, 300);
    imshow("currFrame", rightFrame);
    imshow("prevFrame", leftFrame);
    imwrite("RectfRight.jpg", rightFrame);
    imwrite("RectfLeft.jpg", leftFrame);
    waitKey(0);
    stereo(rightFrame, leftFrame, disp16, CV_16S);
    disp16.convertTo(disp8, CV_8UC1, 255/ndisp);
    FileStorage file("disp_map.xml", FileStorage::WRITE);
    file << "disparity" << disp8;
    file.release();
    imshow("disparity", disp8);
    imwrite("disparity.jpg", disp8);
    moveWindow("disparity", 0, 0);
    waitKey(0);
}
drawKeyPoint序列是我直观地检查两个图像的点的一致性的方式.通过按顺序绘制每个关键点,我可以确定图像A上的关键点i是图像B上的关键点i.
我也尝试过使用ndisp参数,但它并没有多大帮助.
我尝试了以下一对图像:
得到以下整理对:
最后,以下视差图
正如你所看到的,这是非常糟糕的.我也用以下的stereoRectifyUncalibrated示例尝试了同一对图像:http://programmingexamples.net/wiki/OpenCV/WishList/StereoRectifyUncalibrated和来自opencv教程代码示例的SBM_Sample.cpp来构建视差图,并得到了一个非常相似的结果.
我正在使用opencv 2.4
提前致谢!
我建议使用棋盘进行立体校准,或者用棋盘拍摄多张照片并stereocalibrate.cpp在计算机上使用。我是说,因为您使用的是stereorectifyuncalibrated,虽然算法不需要知道相机的内在参数,但它在很大程度上取决于对极几何形状。因此,如果相机镜头有明显的畸变,最好在计算基本矩阵并调用该函数之前对其进行校正。例如,可以使用 分别估计立体相机每个头的畸变系数calibrateCamera()。然后,可以使用 来校正图像undistort(),或者使用 来仅校正点坐标undistortPoints()。
| 归档时间: | 
 | 
| 查看次数: | 4138 次 | 
| 最近记录: |