Mic*_*ico 65
data.table::fwrite()由Otto Seiskari提供,版本1.9.8+.Matt在顶部进行了额外的增强(包括并行化),并写了一篇关于它的文章.请在跟踪器上报告任何问题.
首先,这里是对@chase上面使用的相同维度的比较(即,非常多的列:65,000列(!) x 256行),以及fwrite和write_feather,以便我们在机器之间具有一定的一致性.注意compress=FALSE基础R 的巨大差异.
# -----------------------------------------------------------------------------
# function | object type | output type | compress= | Runtime | File size |
# -----------------------------------------------------------------------------
# save | matrix | binary | FALSE | 0.3s | 134MB |
# save | data.frame | binary | FALSE | 0.4s | 135MB |
# feather | data.frame | binary | FALSE | 0.4s | 139MB |
# fwrite | data.table | csv | FALSE | 1.0s | 302MB |
# save | matrix | binary | TRUE | 17.9s | 89MB |
# save | data.frame | binary | TRUE | 18.1s | 89MB |
# write.csv | matrix | csv | FALSE | 21.7s | 302MB |
# write.csv | data.frame | csv | FALSE | 121.3s | 302MB |
Run Code Online (Sandbox Code Playgroud)
请注意,fwrite()并行运行.这里显示的时间是13英寸Macbook Pro,带有2个内核和1个线程/核心(通过超线程实现+2个虚拟线程),512GB SSD,256KB /核心L2缓存和4MB L4缓存.根据您的系统规格,YMMV.
我还重新考虑了相对更可能(和更大)数据的基准:
library(data.table)
NN <- 5e6 # at this number of rows, the .csv output is ~800Mb on my machine
set.seed(51423)
DT <- data.table(
str1 = sample(sprintf("%010d",1:NN)), #ID field 1
str2 = sample(sprintf("%09d",1:NN)), #ID field 2
# varying length string field--think names/addresses, etc.
str3 = replicate(NN,paste0(sample(LETTERS,sample(10:30,1),T), collapse="")),
# factor-like string field with 50 "levels"
str4 = sprintf("%05d",sample(sample(1e5,50),NN,T)),
# factor-like string field with 17 levels, varying length
str5 = sample(replicate(17,paste0(sample(LETTERS, sample(15:25,1),T),
collapse="")),NN,T),
# lognormally distributed numeric
num1 = round(exp(rnorm(NN,mean=6.5,sd=1.5)),2),
# 3 binary strings
str6 = sample(c("Y","N"),NN,T),
str7 = sample(c("M","F"),NN,T),
str8 = sample(c("B","W"),NN,T),
# right-skewed (integer type)
int1 = as.integer(ceiling(rexp(NN))),
num2 = round(exp(rnorm(NN,mean=6,sd=1.5)),2),
# lognormal numeric that can be positive or negative
num3 = (-1)^sample(2,NN,T)*round(exp(rnorm(NN,mean=6,sd=1.5)),2))
# -------------------------------------------------------------------------------
# function | object | out | other args | Runtime | File size |
# -------------------------------------------------------------------------------
# fwrite | data.table | csv | quote = FALSE | 1.7s | 523.2MB |
# fwrite | data.frame | csv | quote = FALSE | 1.7s | 523.2MB |
# feather | data.frame | bin | no compression | 3.3s | 635.3MB |
# save | data.frame | bin | compress = FALSE | 12.0s | 795.3MB |
# write.csv | data.frame | csv | row.names = FALSE | 28.7s | 493.7MB |
# save | data.frame | bin | compress = TRUE | 48.1s | 190.3MB |
# -------------------------------------------------------------------------------
Run Code Online (Sandbox Code Playgroud)
所以fwrite比feather这个测试快2倍.这是在如上所述的同一台机器上fwrite运行,并在2个核心上并行运行.
feather 似乎也是非常快的二进制格式,但还没有压缩.
这是尝试展示如何fwrite比较规模:
注:基准已运行更新基础R的save()使用compress = FALSE(因为羽毛也不会被压缩).
所以fwrite就是所有这些关于该数据(2个核心上运行)的最快加上它创建了一个.csv可以很容易被观看,检查和传递到grep,sed等
复制代码:
require(data.table)
require(microbenchmark)
require(feather)
ns <- as.integer(10^seq(2, 6, length.out = 25))
DTn <- function(nn)
data.table(
str1 = sample(sprintf("%010d",1:nn)),
str2 = sample(sprintf("%09d",1:nn)),
str3 = replicate(nn,paste0(sample(LETTERS,sample(10:30,1),T), collapse="")),
str4 = sprintf("%05d",sample(sample(1e5,50),nn,T)),
str5 = sample(replicate(17,paste0(sample(LETTERS, sample(15:25,1),T), collapse="")),nn,T),
num1 = round(exp(rnorm(nn,mean=6.5,sd=1.5)),2),
str6 = sample(c("Y","N"),nn,T),
str7 = sample(c("M","F"),nn,T),
str8 = sample(c("B","W"),nn,T),
int1 = as.integer(ceiling(rexp(nn))),
num2 = round(exp(rnorm(nn,mean=6,sd=1.5)),2),
num3 = (-1)^sample(2,nn,T)*round(exp(rnorm(nn,mean=6,sd=1.5)),2))
count <- data.table(n = ns,
c = c(rep(1000, 12),
rep(100, 6),
rep(10, 7)))
mbs <- lapply(ns, function(nn){
print(nn)
set.seed(51423)
DT <- DTn(nn)
microbenchmark(times = count[n==nn,c],
write.csv=write.csv(DT, "writecsv.csv", quote=FALSE, row.names=FALSE),
save=save(DT, file = "save.RData", compress=FALSE),
fwrite=fwrite(DT, "fwrite_turbo.csv", quote=FALSE, sep=","),
feather=write_feather(DT, "feather.feather"))})
png("microbenchmark.png", height=600, width=600)
par(las=2, oma = c(1, 0, 0, 0))
matplot(ns, t(sapply(mbs, function(x) {
y <- summary(x)[,"median"]
y/y[3]})),
main = "Relative Speed of fwrite (turbo) vs. rest",
xlab = "", ylab = "Time Relative to fwrite (turbo)",
type = "l", lty = 1, lwd = 2,
col = c("red", "blue", "black", "magenta"), xaxt = "n",
ylim=c(0,25), xlim=c(0, max(ns)))
axis(1, at = ns, labels = prettyNum(ns, ","))
mtext("# Rows", side = 1, las = 1, line = 5)
legend("right", lty = 1, lwd = 3,
legend = c("write.csv", "save", "feather"),
col = c("red", "blue", "magenta"))
dev.off()
Run Code Online (Sandbox Code Playgroud)
Cha*_*ase 25
如果所有列都属于同一类,则在写出之前转换为矩阵,提供近6倍的加速.此外,您可以查看write.matrix()从包中使用MASS,但这个例子并没有证明更快.也许我没有正确设置:
#Fake data
m <- matrix(runif(256*65536), nrow = 256)
#AS a data.frame
system.time(write.csv(as.data.frame(m), "dataframe.csv"))
#----------
# user system elapsed
# 319.53 13.65 333.76
#As a matrix
system.time(write.csv(m, "matrix.csv"))
#----------
# user system elapsed
# 52.43 0.88 53.59
#Using write.matrix()
require(MASS)
system.time(write.matrix(m, "writematrix.csv"))
#----------
# user system elapsed
# 113.58 59.12 172.75
Run Code Online (Sandbox Code Playgroud)
为了解决下面提出的问题,上面的结果对data.frame不公平,这里有一些结果和时间表明整个消息仍然"如果可能的话将数据对象转换为矩阵.如果不可能,请处理或者,重新考虑为什么你需要以CSV格式写出一个200MB +的文件,如果时间是最重要的":
#This is a data.frame
m2 <- as.data.frame(matrix(runif(256*65536), nrow = 256))
#This is still 6x slower
system.time(write.csv(m2, "dataframe.csv"))
# user system elapsed
# 317.85 13.95 332.44
#This even includes the overhead in converting to as.matrix in the timing
system.time(write.csv(as.matrix(m2), "asmatrix.csv"))
# user system elapsed
# 53.67 0.92 54.67
Run Code Online (Sandbox Code Playgroud)
所以,没有什么真正改变.要确认这是合理的,请考虑以下方面的相对时间成本as.data.frame():
m3 <- as.matrix(m2)
system.time(as.data.frame(m3))
# user system elapsed
# 0.77 0.00 0.77
Run Code Online (Sandbox Code Playgroud)
因此,与下面的评论相信,并不是真正的大问题或倾斜信息.如果您仍然不相信使用write.csv()大型数据框架在性能方面是个坏主意,请参阅以下手册Note:
write.table can be slow for data frames with large numbers (hundreds or more) of
columns: this is inevitable as each column could be of a different class and so must be
handled separately. If they are all of the same class, consider using a matrix instead.
Run Code Online (Sandbox Code Playgroud)
最后,如果您仍然因为更快地保存事物而失眠,请考虑转移到本机RData对象
system.time(save(m2, file = "thisisfast.RData"))
# user system elapsed
# 21.67 0.12 21.81
Run Code Online (Sandbox Code Playgroud)
had*_*ley 12
另一种选择是使用羽毛文件格式.
df <- as.data.frame(matrix(runif(256*65536), nrow = 256))
system.time(feather::write_feather(df, "df.feather"))
#> user system elapsed
#> 0.237 0.355 0.617
Run Code Online (Sandbox Code Playgroud)
Feather是一种二进制文件格式,旨在提高读写效率.它设计用于多种语言:目前有R和python客户端,julia客户端正在开发中.
为了比较,这saveRDS需要多长时间:
system.time(saveRDS(df, "df.rds"))
#> user system elapsed
#> 17.363 0.307 17.856
Run Code Online (Sandbox Code Playgroud)
现在,这是一个有点不公平的比较,因为默认saveRDS是压缩数据,这里数据是不可压缩的,因为它是完全随机的.关闭压缩会saveRDS显着加快速度:
system.time(saveRDS(df, "df.rds", compress = FALSE))
#> user system elapsed
#> 0.181 0.247 0.473
Run Code Online (Sandbox Code Playgroud)
事实上它现在比羽毛快一点.那么为什么要用羽毛?嗯,它通常比它快readRDS(),并且与读取它的次数相比,通常写入的数据相对较少.
system.time(readRDS("df.rds"))
#> user system elapsed
#> 0.198 0.090 0.287
system.time(feather::read_feather("df.feather"))
#> user system elapsed
#> 0.125 0.060 0.185
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
16726 次 |
| 最近记录: |