vge*_*eta 8 c algorithm dynamic-programming
我遇到了这个问题.给定一个仅包含正值的数组,您希望在约束条件下最大化所选元素的总和,使得多于k个选定元素的组不相邻.例如,如果输入是1 2 3 1 7 9(n = 6且k = 2).输出将是21,它来自挑选元素_ 2 3 _ 7 9.我的简单DP解决方案就是这个
#include<stdio.h>
#include<limits.h>
#include<malloc.h>
long maxsum(int n,int k,long *sums){
long *maxsums;
maxsums = malloc(sizeof(long)*n);
int i;
long add = 0;
for(i=n-1;i>=n-k;i--){
add += sums[i];
maxsums[i] = add;
}
for(i = n-k-1;i>=0;i--){
int j;
long sum =0,max = 0,cur;
for(j=0;j<=k;j++){
cur = sum;
if((i+j+1)<n)
cur += maxsums[i+j+1];
if(cur > max) max = cur;
sum += sums[i+j];
}
maxsums[i] = max;
}
return maxsums[0];
}
int main(){
int cases=0,casedone=0;
int n,k;
long *array;
long maxsum = 0;
fscanf(stdin,"%d %d",&n,&k);
array = malloc(sizeof(long)*n);
int i =0;
while(casedone < n){
fscanf(stdin,"%ld",&array[casedone]);
casedone++;
}
printf("%ld",maxsum(n,k,array));
}
Run Code Online (Sandbox Code Playgroud)
但我不确定这是否是有效的解决方案.可以进一步降低复杂性吗?谢谢你的帮助
我认为这会起作用:
findMaxSum(int a[], int in, int last, int k) { // in is current index, last is index of last chosen element
if ( in == size of a[] ) return 0;
dontChoseCurrent = findMaxSum(a, in+1, last, k); // If current element is negative, this will give better result
if (last == in-1 and k > 0) { // last and in are adjacent, to chose this k must be greater than 0
choseCurrentAdjacent = findMaxSum(a, in+1, in, k-1) + a[in];
}
if (last != in-1) { // last and in are not adjacent, you can chose this.
choseCurrentNotAdjacent = findMaxSum(a, in+1, in, k) + a[in];
}
return max of dontChoseCurrent, choseCurrentAdjacent, choseCurrentNotAdjacent
}
Run Code Online (Sandbox Code Playgroud)