我试图编写代码来解决标准的整数分区问题(维基百科).我写的代码很乱.我需要一个优雅的解决方案来解决问题,因为我想改进我的编码风格.这不是一个家庭作业问题.
sko*_*kin 47
比Nolen的功能更小更快:
def partitions(n, I=1):
yield (n,)
for i in range(I, n//2 + 1):
for p in partitions(n-i, i):
yield (i,) + p
Run Code Online (Sandbox Code Playgroud)
我们来比较一下:
In [10]: %timeit -n 10 r0 = nolen(20)
1.37 s ± 28.7 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [11]: %timeit -n 10 r1 = list(partitions(20))
979 µs ± 82.9 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [13]: sorted(map(sorted, r0)) == sorted(map(sorted, r1))
Out[14]: True
Run Code Online (Sandbox Code Playgroud)
看起来它快了1370倍n = 20.
无论如何,它仍然远离accel_asc:
def accel_asc(n):
a = [0 for i in range(n + 1)]
k = 1
y = n - 1
while k != 0:
x = a[k - 1] + 1
k -= 1
while 2 * x <= y:
a[k] = x
y -= x
k += 1
l = k + 1
while x <= y:
a[k] = x
a[l] = y
yield a[:k + 2]
x += 1
y -= 1
a[k] = x + y
y = x + y - 1
yield a[:k + 1]
Run Code Online (Sandbox Code Playgroud)
它不仅速度慢,而且需要更多的内存(但显然更容易记住):
In [18]: %timeit -n 5 r2 = list(accel_asc(50))
114 ms ± 1.04 ms per loop (mean ± std. dev. of 7 runs, 5 loops each)
In [19]: %timeit -n 5 r3 = list(partitions(50))
527 ms ± 8.86 ms per loop (mean ± std. dev. of 7 runs, 5 loops each)
In [24]: sorted(map(sorted, r2)) == sorted(map(sorted, r3))
Out[24]: True
Run Code Online (Sandbox Code Playgroud)
您可以在ActiveState上找到其他版本:整数分区生成器(Python Recipe).
我使用Python 3.6.1和IPython 6.0.0.
Nol*_*lty 37
虽然这个答案很好,我建议skovorodkin的答案如下:
>>> def partition(number):
... answer = set()
... answer.add((number, ))
... for x in range(1, number):
... for y in partition(number - x):
... answer.add(tuple(sorted((x, ) + y)))
... return answer
...
>>> partition(4)
set([(1, 3), (2, 2), (1, 1, 2), (1, 1, 1, 1), (4,)])
Run Code Online (Sandbox Code Playgroud)
如果你想要所有的排列(即(1,3)和(3,1))改变answer.add(tuple(sorted((x, ) + y))为answer.add((x, ) + y)
Nic*_*mer 13
我已经将解决方案与perfplot(我的一个小项目用于此类目的)进行了比较,并发现Nolen的最高投票答案也是最慢的.
通过提供这两个答案skovorodkin是多快.(注意对数刻度.)
要生成图:
import perfplot
import collections
def nolen(number):
answer = set()
answer.add((number, ))
for x in range(1, number):
for y in nolen(number - x):
answer.add(tuple(sorted((x, ) + y)))
return answer
def skovorodkin(n):
return set(skovorodkin_yield(n))
def skovorodkin_yield(n, I=1):
yield (n,)
for i in range(I, n//2 + 1):
for p in skovorodkin_yield(n-i, i):
yield (i,) + p
def accel_asc(n):
return set(accel_asc_yield(n))
def accel_asc_yield(n):
a = [0 for i in range(n + 1)]
k = 1
y = n - 1
while k != 0:
x = a[k - 1] + 1
k -= 1
while 2 * x <= y:
a[k] = x
y -= x
k += 1
l = k + 1
while x <= y:
a[k] = x
a[l] = y
yield tuple(a[:k + 2])
x += 1
y -= 1
a[k] = x + y
y = x + y - 1
yield tuple(a[:k + 1])
def mct(n):
partitions_of = []
partitions_of.append([()])
partitions_of.append([(1,)])
for num in range(2, n+1):
ptitions = set()
for i in range(num):
for partition in partitions_of[i]:
ptitions.add(tuple(sorted((num - i, ) + partition)))
partitions_of.append(list(ptitions))
return partitions_of[n]
perfplot.show(
setup=lambda n: n,
kernels=[
nolen,
mct,
skovorodkin,
accel_asc,
],
n_range=range(1, 17),
logy=True,
# https://stackoverflow.com/a/7829388/353337
equality_check=lambda a, b:
collections.Counter(set(a)) == collections.Counter(set(b)),
xlabel='n'
)
Run Code Online (Sandbox Code Playgroud)
Nic*_*mer 10
我需要解决一个类似的问题,即将整数n划分d为非负部分,并进行排列。为此,有一个简单的递归解决方案(请参阅此处):
def partition(n, d, depth=0):
if d == depth:
return [[]]
return [
item + [i]
for i in range(n+1)
for item in partition(n-i, d, depth=depth+1)
]
# extend with n-sum(entries)
n = 5
d = 3
lst = [[n-sum(p)] + p for p in partition(n, d-1)]
print(lst)
Run Code Online (Sandbox Code Playgroud)
输出:
[
[5, 0, 0], [4, 1, 0], [3, 2, 0], [2, 3, 0], [1, 4, 0],
[0, 5, 0], [4, 0, 1], [3, 1, 1], [2, 2, 1], [1, 3, 1],
[0, 4, 1], [3, 0, 2], [2, 1, 2], [1, 2, 2], [0, 3, 2],
[2, 0, 3], [1, 1, 3], [0, 2, 3], [1, 0, 4], [0, 1, 4],
[0, 0, 5]
]
Run Code Online (Sandbox Code Playgroud)
比公认的响应要快得多,而且看起来也不错。接受的响应多次执行大量相同的工作,因为它多次计算较低整数的分区。例如,当 n=22 时,差异是12.7 秒和 0.0467 秒。
def partitions_dp(n):
partitions_of = []
partitions_of.append([()])
partitions_of.append([(1,)])
for num in range(2, n+1):
ptitions = set()
for i in range(num):
for partition in partitions_of[i]:
ptitions.add(tuple(sorted((num - i, ) + partition)))
partitions_of.append(list(ptitions))
return partitions_of[n]
Run Code Online (Sandbox Code Playgroud)
代码基本相同,只是我们保存了较小整数的分区,因此我们不必一次又一次地计算它们。
我有点晚了,但我可以提供一个贡献,在某些意义上可能更优雅:
def partitions(n, m = None):
"""Partition n with a maximum part size of m. Yield non-increasing
lists in decreasing lexicographic order. The default for m is
effectively n, so the second argument is not needed to create the
generator unless you do want to limit part sizes.
"""
if m is None or m >= n: yield [n]
for f in range(n-1 if (m is None or m >= n) else m, 0, -1):
for p in partitions(n-f, f): yield [f] + p
Run Code Online (Sandbox Code Playgroud)
只有3行代码。按字典顺序生成它们。可选地允许拼版最大部件尺寸。
对于具有给定数量的部分的分区,我也有上述变化:
def sized_partitions(n, k, m = None):
"""Partition n into k parts with a max part of m.
Yield non-increasing lists. m not needed to create generator.
"""
if k == 1:
yield [n]
return
for f in range(n-k+1 if (m is None or m > n-k+1) else m, (n-1)//k, -1):
for p in sized_partitions(n-f, k-1, f): yield [f] + p
Run Code Online (Sandbox Code Playgroud)
编写完上述内容后,我遇到了一个我在大约 5 年前创建的解决方案,但我已经忘记了。除了最大零件尺寸外,这个还提供了附加功能,您可以施加最大长度(而不是特定长度)。FWIW:
def partitions(sum, max_val=100000, max_len=100000):
""" generator of partitions of sum with limits on values and length """
# Yields lists in decreasing lexicographical order.
# To get any length, omit 3rd arg.
# To get all partitions, omit 2nd and 3rd args.
if sum <= max_val: # Can start with a singleton.
yield [sum]
# Must have first*max_len >= sum; i.e. first >= sum/max_len.
for first in range(min(sum-1, max_val), max(0, (sum-1)//max_len), -1):
for p in partitions(sum-first, first, max_len-1):
yield [first]+p
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
31997 次 |
| 最近记录: |