如何将从现有列派生的句子嵌入添加到新列中?

and*_*ron 3 python nlp pandas sentence-transformers

我有一个数据框,有四个 nw_data=['Qn_id', 'Qn_context', 'Qns', 'Anwsers']。这就是它的样子

Qn_id  |     Qn_context       |   Qns        |     Anwsers
 01    | In 1962, Uk gave...  | what year....| the year 1962 was.....
 02    | Major kanuti raised..| Who raised...| Kanuti akorimo rasied.
Run Code Online (Sandbox Code Playgroud)

我想向该数据集添加第五列,其中包含列 ['Answers'] 的句子嵌入。

我使用 Sentence_transformers 生成句子嵌入。

from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
Run Code Online (Sandbox Code Playgroud)

我尝试使用一种方法:

#Created a var for the column
sent = nw_data['Answers']
Run Code Online (Sandbox Code Playgroud)

#Passed the variable sent into the model and created the embeddings
embeddings = model.encode(sent)
Run Code Online (Sandbox Code Playgroud)

然后

#Tried passing the embeddings into a new column named Embeddings
nw_data['Embeddings'] = embeddings
Run Code Online (Sandbox Code Playgroud)

我收到错误:

KeyError: 'Embeddings'

The above exception was the direct cause of the following exception:

KeyError                                  Traceback (most recent call last)
KeyError: 'Embeddings'

During handling of the above exception, another exception occurred:

ValueError                                Traceback (most recent call last)
/usr/local/lib/python3.7/dist-packages/pandas/core/internals/blocks.py in check_ndim(values, placement, ndim)
   1978         if len(placement) != len(values):
   1979             raise ValueError(
-> 1980                 f"Wrong number of items passed {len(values)}, "
   1981                 f"placement implies {len(placement)}"
   1982             )

ValueError: Wrong number of items passed 384, placement implies 1
Run Code Online (Sandbox Code Playgroud)

我如何创建这些嵌入并将它们添加到同一数据帧 nw_data 中的新列!!

无论如何是否有可能,建议尝试使用.apply() 方法lambda 函数,但问题是不确定如何或何时使用它们。

ben*_*hid 5

如果我理解正确,您想将列表(嵌入)插入到单元格中。

尝试使用at

>>> import pandas as pd
>>> from sentence_transformers import SentenceTransformer
>>> sentences = 'Absence of sanity'
>>> embedding = model.encode(sentences)
>>> df = pd.DataFrame({'foo': [1, 2], 'Embedding': None})
>>> df.at[0, 'Embedding'] = embedding.tolist()
>>> df.dtypes
foo           int64
Embedding    object
>>> df.head()
dtype: object
   foo                                          Embedding
0    1  [0.2954030930995941, 0.29181134700775146, 2.16...
1    2                                               None
Run Code Online (Sandbox Code Playgroud)

如果有多个句子,只需传递列表即可:

>>> import pandas as pd
>>> sentences = ['Absence of sanity', 'its a new day', 'make the best of it']
>>> embeddings = model.encode(sentences)
>>> df = pd.DataFrame({'foo': [1, 2, 3], 'Embedding': None})
>>> df['Embedding'] = embeddings.tolist()
>>> print(df.head())
   foo                                          Embedding
0    1  [0.29540303349494934, 0.29181137681007385, 2.1...
1    2  [0.0362740121781826, -0.8035800457000732, 2.44...
2    3  [-0.4539063572883606, -0.4333038330078125, 2.2...
Run Code Online (Sandbox Code Playgroud)