and*_*ron 3 python nlp pandas sentence-transformers
我有一个数据框,有四个 nw_data=['Qn_id', 'Qn_context', 'Qns', 'Anwsers']。这就是它的样子
Qn_id | Qn_context | Qns | Anwsers
01 | In 1962, Uk gave... | what year....| the year 1962 was.....
02 | Major kanuti raised..| Who raised...| Kanuti akorimo rasied.
Run Code Online (Sandbox Code Playgroud)
我想向该数据集添加第五列,其中包含列 ['Answers'] 的句子嵌入。
我使用 Sentence_transformers 生成句子嵌入。
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
Run Code Online (Sandbox Code Playgroud)
我尝试使用一种方法:
#Created a var for the column
sent = nw_data['Answers']
Run Code Online (Sandbox Code Playgroud)
和
#Passed the variable sent into the model and created the embeddings
embeddings = model.encode(sent)
Run Code Online (Sandbox Code Playgroud)
然后
#Tried passing the embeddings into a new column named Embeddings
nw_data['Embeddings'] = embeddings
Run Code Online (Sandbox Code Playgroud)
我收到错误:
KeyError: 'Embeddings'
The above exception was the direct cause of the following exception:
KeyError Traceback (most recent call last)
KeyError: 'Embeddings'
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
/usr/local/lib/python3.7/dist-packages/pandas/core/internals/blocks.py in check_ndim(values, placement, ndim)
1978 if len(placement) != len(values):
1979 raise ValueError(
-> 1980 f"Wrong number of items passed {len(values)}, "
1981 f"placement implies {len(placement)}"
1982 )
ValueError: Wrong number of items passed 384, placement implies 1
Run Code Online (Sandbox Code Playgroud)
我如何创建这些嵌入并将它们添加到同一数据帧 nw_data 中的新列!!
无论如何是否有可能,建议尝试使用.apply() 方法或lambda 函数,但问题是不确定如何或何时使用它们。
如果我理解正确,您想将列表(嵌入)插入到单元格中。
尝试使用at:
>>> import pandas as pd
>>> from sentence_transformers import SentenceTransformer
>>> sentences = 'Absence of sanity'
>>> embedding = model.encode(sentences)
>>> df = pd.DataFrame({'foo': [1, 2], 'Embedding': None})
>>> df.at[0, 'Embedding'] = embedding.tolist()
>>> df.dtypes
foo int64
Embedding object
>>> df.head()
dtype: object
foo Embedding
0 1 [0.2954030930995941, 0.29181134700775146, 2.16...
1 2 None
Run Code Online (Sandbox Code Playgroud)
如果有多个句子,只需传递列表即可:
>>> import pandas as pd
>>> sentences = ['Absence of sanity', 'its a new day', 'make the best of it']
>>> embeddings = model.encode(sentences)
>>> df = pd.DataFrame({'foo': [1, 2, 3], 'Embedding': None})
>>> df['Embedding'] = embeddings.tolist()
>>> print(df.head())
foo Embedding
0 1 [0.29540303349494934, 0.29181137681007385, 2.1...
1 2 [0.0362740121781826, -0.8035800457000732, 2.44...
2 3 [-0.4539063572883606, -0.4333038330078125, 2.2...
Run Code Online (Sandbox Code Playgroud)