构建与决策树分类器具有相同输出概率的随机森林分类器

Chr*_*ris 5 python machine-learning decision-tree random-forest scikit-learn

我一直在尝试构建RandomForestClassifier()(RF)模型和DecisionTreeClassifier()(DT)模型以获得相同的输出(仅用于学习目的)。我发现了一些带有答案的问题,我使用这些答案来构建此代码,例如使两个模型相等所需的参数,但我找不到实际执行此操作的代码,因此我正在尝试构建该代码:

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

random_seed = 42

X, y = make_classification(
    n_samples=100000,
    n_features=5,
    random_state=random_seed
)

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=random_seed)

DT = DecisionTreeClassifier(criterion='gini',             # default
                            splitter='best',              # default
                            max_depth=None,               # default
                            min_samples_split=3,          # default
                            min_samples_leaf=1,           # default
                            min_weight_fraction_leaf=0.0, # default
                            max_features=None,            # default
                            random_state=random_seed,     # NON-default
                            max_leaf_nodes=None,          # default
                            min_impurity_decrease=0.0,    # default
                            class_weight=None,            # default
                            ccp_alpha=0.0                 # default
                           )
DT.fit(X_train, y_train)

RF = RandomForestClassifier(n_estimators=1,               # NON-default
                            criterion='gini',             # default
                            max_depth=None,               # default
                            min_samples_split=3,          # default
                            min_samples_leaf=1,           # default
                            min_weight_fraction_leaf=0.0, # default
                            max_features=None,            # NON-default
                            max_leaf_nodes=None,          # default 
                            min_impurity_decrease=0.0,    # default
                            bootstrap=False,              # NON-default
                            oob_score=False,              # default 
                            n_jobs=None,                  # default
                            random_state=random_seed,     # NON-default
                            verbose=0,                    # default
                            warm_start=False,             # default
                            class_weight=None,            # default
                            ccp_alpha=0.0,                # default
                            max_samples=None              # default
                           )

RF.fit(X_train, y_train)

RF_pred =  RF.predict(X_test)
RF_proba = RF.predict_proba(X_test)
DT_pred =  DT.predict(X_test)
DT_proba = DT.predict_proba(X_test)


# Here we validate that the outputs are actually equal, with their respective percentage of how many rows are NOT equal
print('If DT_pred = RF_pred:',np.array_equal(DT_pred, RF_pred), '; Percentage of not equal:', (DT_pred != RF_pred).sum()/len(DT_pred))
print('If DT_proba = RF_proba:', np.array_equal(DT_proba, RF_proba), '; Percentage of not equal:', (DT_proba != RF_proba).sum()/len(DT_proba))

# A plot that shows where those differences are concentrated
sns.set(style="darkgrid")
mask = (RF_proba[:,1] - DT_proba[:,1]) != 0
only_differences = (RF_proba[:,1] - DT_proba[:,1])[mask]
sns.kdeplot(only_differences, shade=True, color="r")
plt.title('Plot of only differences in probs scores')
plt.show()
Run Code Online (Sandbox Code Playgroud)

输出:

在此输入图像描述

我什至找到了一个将 XGBoost 与 DecisionTree 进行比较的答案,称它们几乎相同,而当我测试它们的概率输出时,它们相当不同。

那么,我在这里做错了什么吗?我怎样才能获得这两个模型相同的概率?是否有可能获得上面代码中的True这两个语句?print()

Ben*_*ger 2

尽管您尽了最大努力,但这似乎是由于随机状态造成的。为了使随机森林在随机化方面有效,它需要为每个组件决策树提供不同的随机状态(使用sklearn.ensemble._base._set_random_states)。你可以检查你的代码,当RF.random_stateDT.random_state都是 42 时,RF.estimators_[0].random_state是 1608637542。

bootstrap=False和 时max_columns=None,我相信这只是改变了绑定增益分割的一些效果,因此训练集上的结果非常接近。这可能会转化为测试集上稍大的差异。