什么时候应该运行 wandb.watch 以便权重和偏差正确跟踪参数和梯度?

Cha*_*ker 7 machine-learning neural-network deep-learning wandb

我正在尝试 wandb 库并运行,wandb.watch但这似乎不适用于我的代码。它不应该太复杂,所以我很困惑为什么它不起作用。

代码:

"""
https://docs.wandb.ai/guides/track/advanced/distributed-training

import wandb

# 1. Start a new run
wandb.init(project='playground', entity='brando')

# 2. Save model inputs and hyperparameters
config = wandb.config
config.learning_rate = 0.01

# 3. Log gradients and model parameters
wandb.watch(model)
for batch_idx, (data, target) in enumerate(train_loader):
    ...
    if batch_idx % args.log_interval == 0:
        # 4. Log metrics to visualize performance
        wandb.log({"loss": loss})


Notes:
    - call wandb.init and wandb.log only from the leader process
"""

from argparse import Namespace
from pathlib import Path
from typing import Union

import torch
from torch import nn
from torch.nn.functional import mse_loss
from torch.optim import Optimizer

import uutils
from uutils.torch_uu import r2_score_from_torch
from uutils.torch_uu.distributed import is_lead_worker
from uutils.torch_uu.models import get_simple_model
from uutils.torch_uu.tensorboard import log_2_tb_supervisedlearning


import wandb

def log_2_wandb_nice(it, loss, inputs, outputs, captions):
    wandb.log({"loss": loss, "epoch": it,
               "inputs": wandb.Image(inputs),
               "logits": wandb.Histogram(outputs),
               "captions": wandb.HTML(captions)})

def log_2_wandb(**metrics):
    """ Log to wandb """
    new_metrics: dict = {}
    for key, value in metrics.items():
        key = str(key).strip('_')
        new_metrics[key] = value
    wandb.log(new_metrics)


def log_train_val_stats(args: Namespace,
                        it: int,

                        train_loss: float,
                        train_acc: float,

                        valid,

                        log_freq: int = 10,
                        ckpt_freq: int = 50,
                        force_log: bool = False,  # e.g. at the final it/epoch

                        save_val_ckpt: bool = False,
                        log_to_tb: bool = False,
                        log_to_wandb: bool = False
                        ):
    """

    log train and val stats.

    Note: Unlike save ckpt, this one does need it to be passed explicitly (so it can save it in the stats collector).
    """
    from uutils.torch_uu.tensorboard import log_2_tb
    from matplotlib import pyplot as plt

    # - is it epoch or iteration
    it_or_epoch: str = 'epoch_num' if args.training_mode == 'epochs' else 'it'
    # if its
    total_its: int = args.num_empochs if args.training_mode == 'epochs' else args.num_its

    print(f'-- {it == total_its - 1}')
    print(f'-- {it}')
    print(f'-- {total_its}')
    if (it % log_freq == 0 or is_lead_worker(args.rank) or it == total_its - 1 or force_log) and is_lead_worker(args.rank):
        print('inside log')
        # - get eval stats
        val_loss, val_acc = valid(args, args.mdl, save_val_ckpt=save_val_ckpt)

        # - print
        args.logger.log('\n')
        args.logger.log(f"{it_or_epoch}={it}: {train_loss=}, {train_acc=}")
        args.logger.log(f"{it_or_epoch}={it}: {val_loss=}, {val_acc=}")

        # - record into stats collector
        args.logger.record_train_stats_stats_collector(it, train_loss, train_acc)
        args.logger.record_val_stats_stats_collector(it, val_loss, val_acc)
        args.logger.save_experiment_stats_to_json_file()
        fig = args.logger.save_current_plots_and_stats()

        # - log to wandb
        if log_to_wandb:
            # if it == 0:
            #     # -- todo why isn't this working?
            #     wandb.watch(args.mdl)
            #     print('watching model')
            # log_2_wandb(train_loss=train_loss, train_acc=train_acc)
            print('inside wandb log')
            wandb.log(data={'train loss': train_loss, 'train acc': train_acc, 'val loss': val_loss, 'val acc': val_acc}, step=it)
            wandb.log(data={'it': it}, step=it)
            if it == total_its - 1:
                print(f'logging fig at {it=}')
                wandb.log(data={'fig': fig}, step=it)
        plt.close('all')

        # - log to tensorboard
        if log_to_tb:
            log_2_tb_supervisedlearning(args.tb, args, it, train_loss, train_acc, 'train')
            log_2_tb_supervisedlearning(args.tb, args, it, train_loss, train_acc, 'val')
            # log_2_tb(args, it, val_loss, val_acc, 'train')
            # log_2_tb(args, it, val_loss, val_acc, 'val')

    # - log ckpt
    if (it % ckpt_freq == 0 or it == total_its - 1 or force_log) and is_lead_worker(args.rank):
        save_ckpt(args, args.mdl, args.optimizer)


def save_ckpt(args: Namespace, mdl: nn.Module, optimizer: torch.optim.Optimizer,
              dirname: Union[None, Path] = None, ckpt_name: str = 'ckpt.pt'):
    """
    Saves checkpoint for any worker.
    Intended use is to save by worker that got a val loss that improved.


    """
    import dill

    dirname = args.log_root if (dirname is None) else dirname
    # - pickle ckpt
    assert uutils.xor(args.training_mode == 'epochs', args.training_mode == 'iterations')
    pickable_args = uutils.make_args_pickable(args)
    torch.save({'state_dict': mdl.state_dict(),
                'epoch_num': args.epoch_num,
                'it': args.it,
                'optimizer': optimizer.state_dict(),
                'args': pickable_args,
                'mdl': mdl},
               pickle_module=dill,
               f=dirname / ckpt_name)  # f'mdl_{epoch_num:03}.pt'


def get_args() -> Namespace:
    args = uutils.parse_args_synth_agent()
    # we can place model here...
    args = uutils.setup_args_for_experiment(args)
    return args


def valid_for_test(args: Namespace, mdl: nn.Module, save_val_ckpt: bool = False):
    import torch

    for t in range(1):
        x = torch.randn(args.batch_size, 5)
        y = (x ** 2 + x + 1).sum(dim=1)

        y_pred = mdl(x).squeeze(dim=1)
        val_loss, val_acc = mse_loss(y_pred, y), r2_score_from_torch(y_true=y, y_pred=y_pred)

    if val_loss.item() < args.best_val_loss and save_val_ckpt:
        args.best_val_loss = val_loss.item()
        save_ckpt(args, args.mdl, args.optimizer, ckpt_name='ckpt_best_val.pt')
    return val_loss, val_acc


def train_for_test(args: Namespace, mdl: nn.Module, optimizer: Optimizer, scheduler=None):
    # wandb.watch(args.mdl)
    for it in range(args.num_its):
        x = torch.randn(args.batch_size, 5)
        y = (x ** 2 + x + 1).sum(dim=1)

        y_pred = mdl(x).squeeze(dim=1)
        train_loss, train_acc = mse_loss(y_pred, y), r2_score_from_torch(y_true=y, y_pred=y_pred)

        optimizer.zero_grad()
        train_loss.backward()  # each process synchronizes it's gradients in the backward pass
        optimizer.step()  # the right update is done since all procs have the right synced grads
        scheduler.step()

        log_train_val_stats(args, it, train_loss, train_acc, valid_for_test,
                            log_freq=2, ckpt_freq=10,
                            save_val_ckpt=True, log_to_tb=True, log_to_wandb=True)

    return train_loss, train_acc


def debug_test():
    args: Namespace = get_args()
    args.num_its = 12

    # - get mdl, opt, scheduler, etc
    args.mdl = get_simple_model(in_features=5, hidden_features=20, out_features=1, num_layer=2)
    wandb.watch(args.mdl)
    args.optimizer = torch.optim.Adam(args.mdl.parameters(), lr=1e-1)
    args.scheduler = torch.optim.lr_scheduler.ExponentialLR(args.optimizer, gamma=0.999, verbose=False)

    # - train
    train_loss, train_acc = train_for_test(args, args.mdl, args.optimizer, args.scheduler)
    print(f'{train_loss=}, {train_loss=}')

    # - eval
    val_loss, val_acc = valid_for_test(args, args.mdl)

    print(f'{val_loss=}, {val_acc=}')

    # - make sure wandb closes properly
    if args.log_to_wandb:
        wandb.finish()


if __name__ == '__main__':
    import os

    # print(os.environ['WANDB_API_KEY'])
    import time
    start = time.time()
    debug_test()
    duration_secs = time.time() - start
    print(f"\nSuccess, time passed: hours:{duration_secs / (60 ** 2)}, minutes={duration_secs / 60}, seconds={duration_secs}")
    print('Done!\a')
Run Code Online (Sandbox Code Playgroud)

github中的代码:https://github.com/brando90/ultimate-utils/blob/master/tutorials_for_myself/my_wandb/my_wandb_basic1.py

示例运行: https: //wandb.ai/brando/playground/runs/wpupxvg1

交叉发布:https://community.wandb.ai/t/when-is-one-suppose-to-run-wandb-watch-so-that-weights-and-biases-tracks-params-and-gradients-prope /518

Sco*_*ron 5

社区论坛中交叉发布答案charlesfryewandb

您可能会在这里遇到两件事 - 无法确认,因为您的代码依赖于该ultimate-utils包。

  1. wandb.watch仅当您在接触监视对象的向后传递wandb.log 调用后才会开始工作Module文档)。
  2. 记录梯度/参数的频率由参数控制log_freq。如果记录调用的数量小于 的值log_freq,则不会记录任何信息。这是一个重现这种行为的简短合作实验室。

另外,如果你想要参数和梯度,你需要将logkwarg 设置为"all"。默认情况下,我们仅记录梯度。


Cha*_*ker 2

我不知道为什么,但这行代码似乎有效:

    wandb.watch(args.mdl, mse_loss, log="all", log_freq=10)
Run Code Online (Sandbox Code Playgroud)

也许它确实需要损失和日志,尽管它不在介绍/快速入门指南中:

import wandb

# 1. Start a new run
wandb.init(project='playground', entity='brando')

# 2. Save model inputs and hyperparameters
config = wandb.config
config.learning_rate = 0.01

# 3. Log gradients and model parameters
wandb.watch(model)
for batch_idx, (data, target) in enumerate(train_loader):
    ...
    if batch_idx % args.log_interval == 0:
        # 4. Log metrics to visualize performance
        wandb.log({"loss": loss})
Run Code Online (Sandbox Code Playgroud)