使用熊猫计算简单的历史平均值

SSM*_*SMK 3 python numpy time-series dataframe pandas

我有一个如下所示的数据框

data = pd.DataFrame({'day':['1','21','41','61','81','101','121','141','161','181','201','221'],'Sale':[1.08,0.9,0.72,0.58,0.48,0.42,0.37,0.33,0.26,0.24,0.22,0.11]})
Run Code Online (Sandbox Code Playgroud)

我想day 241通过计算所有记录的平均值来填充值,直到day 221. 同样,我想day 261通过计算所有记录的平均值直到day 241等等来计算值。

例如:day n通过取所有值的平均值来计算 的值day 1 to day n-21

我想这样做day 1001

我尝试了以下但不正确

df['day'] = df.iloc[:,1].rolling(window=all).mean()
Run Code Online (Sandbox Code Playgroud)

如何为列下的每一天创建新行day

我希望我的输出如下所示

在此处输入图片说明

Hen*_*ker 5

听起来你正在寻找一个扩大的平均值:

import numpy as np
import pandas as pd

df = pd.DataFrame({'day': ['1', '21', '41', '61', '81', '101', '121', '141',
                           '161', '181', '201', '221'],
                   'Sale': [1.08, 0.9, 0.72, 0.58, 0.48, 0.42, 0.37, 0.33, 0.26,
                            0.24, 0.22, 0.11]})

# Generate Some new values
to_add = pd.DataFrame({'day': np.arange(241, 301, 20)})

# Add New Values To End of DataFrame
new_df = pd.concat((df, to_add)).reset_index(drop=True)

# Replace Values Where Sale is NaN with the expanding mean
new_df['Sale'] = np.where(new_df['Sale'].isna(),
                          new_df['Sale'].expanding().mean(),
                          new_df['Sale'])
print(new_df)
Run Code Online (Sandbox Code Playgroud)
    day      Sale
0     1  1.080000
1    21  0.900000
2    41  0.720000
3    61  0.580000
4    81  0.480000
5   101  0.420000
6   121  0.370000
7   141  0.330000
8   161  0.260000
9   181  0.240000
10  201  0.220000
11  221  0.110000
12  241  0.475833
13  261  0.475833
14  281  0.475833
Run Code Online (Sandbox Code Playgroud)

用 1 替换 NaN 然后求平均值:

    day      Sale
0     1  1.080000
1    21  0.900000
2    41  0.720000
3    61  0.580000
4    81  0.480000
5   101  0.420000
6   121  0.370000
7   141  0.330000
8   161  0.260000
9   181  0.240000
10  201  0.220000
11  221  0.110000
12  241  0.475833
13  261  0.475833
14  281  0.475833
Run Code Online (Sandbox Code Playgroud)
    day      Sale
0     1  1.080000
1    21  0.900000
2    41  0.720000
3    61  0.580000
4    81  0.480000
5   101  0.420000
6   121  0.370000
7   141  0.330000
8   161  0.260000
9   181  0.240000
10  201  0.220000
11  221  0.110000
12  241  0.475833
13  261  0.516154
14  281  0.550714
Run Code Online (Sandbox Code Playgroud)