SSM*_*SMK 3 python numpy time-series dataframe pandas
我有一个如下所示的数据框
data = pd.DataFrame({'day':['1','21','41','61','81','101','121','141','161','181','201','221'],'Sale':[1.08,0.9,0.72,0.58,0.48,0.42,0.37,0.33,0.26,0.24,0.22,0.11]})
Run Code Online (Sandbox Code Playgroud)
我想day 241通过计算所有记录的平均值来填充值,直到day 221. 同样,我想day 261通过计算所有记录的平均值直到day 241等等来计算值。
例如:day n通过取所有值的平均值来计算 的值day 1 to day n-21。
我想这样做day 1001。
我尝试了以下但不正确
df['day'] = df.iloc[:,1].rolling(window=all).mean()
Run Code Online (Sandbox Code Playgroud)
如何为列下的每一天创建新行day?
我希望我的输出如下所示
听起来你正在寻找一个扩大的平均值:
import numpy as np
import pandas as pd
df = pd.DataFrame({'day': ['1', '21', '41', '61', '81', '101', '121', '141',
'161', '181', '201', '221'],
'Sale': [1.08, 0.9, 0.72, 0.58, 0.48, 0.42, 0.37, 0.33, 0.26,
0.24, 0.22, 0.11]})
# Generate Some new values
to_add = pd.DataFrame({'day': np.arange(241, 301, 20)})
# Add New Values To End of DataFrame
new_df = pd.concat((df, to_add)).reset_index(drop=True)
# Replace Values Where Sale is NaN with the expanding mean
new_df['Sale'] = np.where(new_df['Sale'].isna(),
new_df['Sale'].expanding().mean(),
new_df['Sale'])
print(new_df)
Run Code Online (Sandbox Code Playgroud)
day Sale
0 1 1.080000
1 21 0.900000
2 41 0.720000
3 61 0.580000
4 81 0.480000
5 101 0.420000
6 121 0.370000
7 141 0.330000
8 161 0.260000
9 181 0.240000
10 201 0.220000
11 221 0.110000
12 241 0.475833
13 261 0.475833
14 281 0.475833
Run Code Online (Sandbox Code Playgroud)
用 1 替换 NaN 然后求平均值:
day Sale
0 1 1.080000
1 21 0.900000
2 41 0.720000
3 61 0.580000
4 81 0.480000
5 101 0.420000
6 121 0.370000
7 141 0.330000
8 161 0.260000
9 181 0.240000
10 201 0.220000
11 221 0.110000
12 241 0.475833
13 261 0.475833
14 281 0.475833
Run Code Online (Sandbox Code Playgroud)
day Sale
0 1 1.080000
1 21 0.900000
2 41 0.720000
3 61 0.580000
4 81 0.480000
5 101 0.420000
6 121 0.370000
7 141 0.330000
8 161 0.260000
9 181 0.240000
10 201 0.220000
11 221 0.110000
12 241 0.475833
13 261 0.516154
14 281 0.550714
Run Code Online (Sandbox Code Playgroud)