Apply a function to each cell of a pandas dataframe using information from a particular column

J-H*_*J-H 5 python numpy apply pandas

I want to expand the list entries of a dataframe using the information in column i:

i   s_1         s_1        s_3
2   [1, 2, 3]   [3, 4, 5]  NaN
1   NaN         [0, 0, 0]  [2]
Run Code Online (Sandbox Code Playgroud)

The i value just indicates how often the last value of each list should be copied:

i   s_1               s_1              s_3
2   [1, 2, 3, 3, 3]   [3, 4, 5, 5, 5]  NaN
1   NaN               [0, 0, 0, 0]     [2, 2]
Run Code Online (Sandbox Code Playgroud)

I am currently using a nested apply loop:

test.apply(lambda x: x.apply(
     lambda y: np.pad(y, (0, x.i), 'constant', constant_values=y[-1]) if type(y)==list else 0), axis=1)
Run Code Online (Sandbox Code Playgroud)

However, this is very slow and if i have a lot of rows (>10.000) the code breaks. This solution seems a bit messy and i'm wondering what the best approach would be to do something like that?

And*_*ely 3

您可以尝试就地扩展列表:

for col in df.loc[:, "s_1":]:
    m = df[col].notna()

    for i, v in zip(df.loc[m, "i"], df.loc[m, col]):
        v.extend([v[-1]] * i)

    df.loc[~m, col] = 0
Run Code Online (Sandbox Code Playgroud)

基准:

for col in df.loc[:, "s_1":]:
    m = df[col].notna()

    for i, v in zip(df.loc[m, "i"], df.loc[m, col]):
        v.extend([v[-1]] * i)

    df.loc[~m, col] = 0
Run Code Online (Sandbox Code Playgroud)

印刷:

from timeit import timeit
from ast import literal_eval


def get_df():
    dfs = []

    # create some big dataframe
    for i in range(5000):
        txt = """
        i   s_1         s_1        s_3
        2   [1, 2, 3]   [3, 4, 5]  NaN
        1   NaN         [0, 0, 0]  [2]  """

        df = pd.read_csv(StringIO(txt), sep=r"\s{2,}", engine="python")

        df.loc[:, "s_1":] = df.loc[:, "s_1":].apply(
            lambda x: [v if pd.isna(v) else literal_eval(v) for v in x]
        )
        dfs.append(df)

    return pd.concat(dfs)


def f1(df):
    for col in df.loc[:, "s_1":]:
        m = df[col].notna()

        for i, v in zip(df.loc[m, "i"], df.loc[m, col]):
            v.extend([v[-1]] * i)

        df.loc[~m, col] = 0
    return df


def f2(df):
    df = df.apply(
        lambda x: x.apply(
            lambda y: np.pad(y, (0, x.i), "constant", constant_values=y[-1])
            if type(y) == list
            else 0
        ),
        axis=1,
    )
    return df


df1 = get_df()
df2 = get_df()

t1 = timeit(lambda: f1(df1), number=1)
t2 = timeit(lambda: f2(df2), number=1)

print(t1)
print(t2)
Run Code Online (Sandbox Code Playgroud)

所以改进~200x