And*_*bel 5 cpu x86 x86-64 intel cpu-architecture
最近的 Intel CPU 的前端包含一个复杂的解码器和许多简单的解码器。复杂解码器可以处理解码为多个微操作的指令,而简单解码器仅支持解码为单个(融合域)微操作的指令。
是否可以通过简单解码器来解码所有 1-μop 指令,或者是否存在只能由复杂解码器处理的 1-μop 指令?
Andreas 的评论表明xor eax,eax/setnle al似乎有 1/clock 的解码瓶颈。我发现了同样的事情cdq:读取 EAX,写入 EDX,也可以证明从 DSB(uop 缓存)运行得更快,并且不涉及部分寄存器或任何奇怪的东西,并且不需要破坏指令。
更好的是,作为单字节指令,它可以仅用一小块指令就可以击败 DSB。(导致对某些 CPU 的测试产生误导性结果,例如在 Agner Fog 的表和https://uops.info/ 上,例如 SKX 显示为 1c 吞吐量。) https://www.uops.info/html-tp/SKX /CDQ-Measurements.html与https://www.uops.info/html-tp/CFL/CDQ-Measurements.html由于不同的测试方法而具有不一致的吞吐量:只有 Coffee Lake 测试过足够小的展开测试计数 (10) 以不破坏 DSB,发现吞吐量为 0.6。(考虑到循环开销,实际吞吐量为 0.5,完全由后端端口压力解释为cqo. IDK 为什么你会在循环中找到 0.6 而不是 0.55 并且只有一个额外的 p6 uop。)
(Zen 可以以 0.25c 的吞吐量运行此指令;没有奇怪的解码问题并且由每个整数 ALU 端口处理。)
times 10 cdq 在 dec/jnz 循环中可以从 uop 缓存运行,并在 Skylake (p06) 上以 0.5c 的吞吐量运行,加上循环开销,这也与 p6 竞争。
times 20 cdq对于一个 32 字节的机器代码块,超过 3 个 uop 缓存行,这意味着循环只能从传统解码运行(循环的顶部对齐)。在 Skylake 上,它以每 1 个周期运行cdq。Perf 计数器确认 MITE 每个周期提供 1 uop,而不是 3 或 4 组,中间有空闲周期。
default rel
%ifdef __YASM_VER__
CPU Skylake AMD
%else
%use smartalign
alignmode p6, 64
%endif
global _start
_start:
mov ebp, 1000000000
align 64
.loop:
;times 10 cdq ; 0.5c throughput
;times 20 cdq ; 1c throughput, 1 MITE uop per cycle front-end
; times 10 cqo ; 0.5c throughput 2-byte insn fits uop cache
; times 10 cdqe ; 1c throughput data dependency
;times 10 cld ; ~4c throughput, 3 uops
dec ebp
jnz .loop
.end:
xor edi,edi
mov eax,231 ; __NR_exit_group from /usr/include/asm/unistd_64.h
syscall ; sys_exit_group(0)
Run Code Online (Sandbox Code Playgroud)
在我的 Arch Linux 桌面上,我将它构建到一个静态可执行文件中以在 perf 下运行:
in a bash shell:
t=cdq-latency; nasm -f elf64 "$t".asm && ld -o "$t" "$t.o" && objdump -drwC -Mintel "$t" && taskset -c 3 perf stat --all-user -etask-clock,context-switches,cpu-migrations,page-faults,cycles,instructions,uops_issued.any,frontend_retired.dsb_miss,idq.dsb_uops,idq.mite_uops,idq.mite_cycles,idq_uops_not_delivered.core,idq_uops_not_delivered.cycles_fe_was_ok,idq.all_mite_cycles_4_uops ./"$t"
Run Code Online (Sandbox Code Playgroud)
拆卸
0000000000401000 <_start>:
401000: bd 00 ca 9a 3b mov ebp,0x3b9aca00
401005: 0f 1f 84 00 00 00 00 00 nop DWORD PTR [rax+rax*1+0x0]
...
40103d: 0f 1f 00 nop DWORD PTR [rax]
0000000000401040 <_start.loop>:
401040: 99 cdq
401041: 99 cdq
401042: 99 cdq
401043: 99 cdq
...
401052: 99 cdq
401053: 99 cdq # 20 total CDQ
401054: ff cd dec ebp
401056: 75 e8 jne 401040 <_start.loop>
0000000000401058 <_start.end>:
401058: 31 ff xor edi,edi
40105a: b8 e7 00 00 00 mov eax,0xe7
40105f: 0f 05 syscall
Run Code Online (Sandbox Code Playgroud)
性能结果:
Performance counter stats for './cdq-latency':
5,205.44 msec task-clock # 1.000 CPUs utilized
0 context-switches # 0.000 K/sec
0 cpu-migrations # 0.000 K/sec
1 page-faults # 0.000 K/sec
20,124,711,776 cycles # 3.866 GHz (49.88%)
22,015,118,295 instructions # 1.09 insn per cycle (59.91%)
21,004,212,389 uops_issued.any # 4035.049 M/sec (59.97%)
1,005,872,141 frontend_retired.dsb_miss # 193.235 M/sec (60.03%)
0 idq.dsb_uops # 0.000 K/sec (60.08%)
20,997,157,414 idq.mite_uops # 4033.694 M/sec (60.12%)
19,996,447,738 idq.mite_cycles # 3841.451 M/sec (40.03%)
59,048,559,790 idq_uops_not_delivered.core # 11343.621 M/sec (39.97%)
112,956,733 idq_uops_not_delivered.cycles_fe_was_ok # 21.700 M/sec (39.92%)
209,490 idq.all_mite_cycles_4_uops # 0.040 M/sec (39.88%)
5.206491348 seconds time elapsed
Run Code Online (Sandbox Code Playgroud)
所以循环开销(dec/jnz)基本上是免费发生的,在与上一个cdq. 计数并不准确,因为我在一次运行中使用了太多事件(启用了 HT),因此性能进行了软件多路复用。从另一个计数器较少的运行中:
# same source, only these HW counters enabled to avoid multiplexing
5,161.14 msec task-clock # 1.000 CPUs utilized
20,107,065,550 cycles # 3.896 GHz
20,000,134,955 idq.mite_cycles # 3875.142 M/sec
59,050,860,720 idq_uops_not_delivered.core # 11441.447 M/sec
95,968,317 idq_uops_not_delivered.cycles_fe_was_ok # 18.594 M/sec
Run Code Online (Sandbox Code Playgroud)
所以我们可以看到 MITE(传统解码)基本上在每个周期都处于活动状态,而前端基本上从来没有“正常”。(即永远不会在后端停滞)。
只有 10 个 CDQ 指令,允许 DSB 工作:
...
0000000000401040 <_start.loop>:
401040: 99 cdq
401041: 99 cdq
...
401049: 99 cdq # 10 total CDQ insns
40104a: ff cd dec ebp
40104c: 75 f2 jne 401040 <_start.loop>
Performance counter stats for './cdq-latency' (4 runs):
1,417.38 msec task-clock # 1.000 CPUs utilized ( +- 0.03% )
0 context-switches # 0.000 K/sec
0 cpu-migrations # 0.000 K/sec
1 page-faults # 0.001 K/sec
5,511,283,047 cycles # 3.888 GHz ( +- 0.03% ) (49.83%)
11,997,247,694 instructions # 2.18 insn per cycle ( +- 0.00% ) (59.99%)
10,999,182,841 uops_issued.any # 7760.224 M/sec ( +- 0.00% ) (60.17%)
197,753 frontend_retired.dsb_miss # 0.140 M/sec ( +- 13.62% ) (60.21%)
10,988,958,908 idq.dsb_uops # 7753.010 M/sec ( +- 0.03% ) (60.21%)
10,234,859 idq.mite_uops # 7.221 M/sec ( +- 27.43% ) (60.21%)
8,114,909 idq.mite_cycles # 5.725 M/sec ( +- 26.11% ) (39.83%)
40,588,332 idq_uops_not_delivered.core # 28.636 M/sec ( +- 21.83% ) (39.79%)
5,502,581,002 idq_uops_not_delivered.cycles_fe_was_ok # 3882.221 M/sec ( +- 0.01% ) (39.79%)
56,223 idq.all_mite_cycles_4_uops # 0.040 M/sec ( +- 3.32% ) (39.79%)
1.417599 +- 0.000489 seconds time elapsed ( +- 0.03% )
Run Code Online (Sandbox Code Playgroud)
据报道idq_uops_not_delivered.cycles_fe_was_ok,基本上所有未使用的前端uop插槽都是后端的故障(p0 / p6上的端口压力),而不是前端。
| 归档时间: |
|
| 查看次数: |
327 次 |
| 最近记录: |