ValueError:至少需要一个数组或数据类型

TYS*_*TYS 3 python artificial-intelligence neural-network scikit-learn

我的代码:

import numpy as np
from pandas import read_csv
from matplotlib import pyplot as plt
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split

data = read_csv('data.csv', usecols=['col_1'])

df_x = data.iloc[:, 1:]
df_y = data.iloc[:, 0]

x_train, x_test, y_train, y_test = train_test_split(df_x, df_y, test_size=0.9, random_state=4)

nn = MLPClassifier(activation='logistic', solver='sgd', hidden_layer_sizes=(2,), random_state=1)
#nn.fit(x_train[x], y_train[x])

print(nn)

nn.fit(x_train, y_test)

pred = nn.predict(x_test)

Run Code Online (Sandbox Code Playgroud)

我收到了.fit()方法标题中显示的错误,并且由于我是 ML 新手,因此对文档了解不多。

完整错误:

File "C:/NNC/Main.py", line 14, in <module>
    data.target.array([])
  File "C:\NNC\venv\lib\site-packages\pandas\core\generic.py", line 5179, in __getattr__
    return object.__getattribute__(self, name)
AttributeError: 'DataFrame' object has no attribute 'target'
Run Code Online (Sandbox Code Playgroud)

更新 - :
我已经删除并更新了它,因为这是为了测试文档中找到的解决方案。我已经更新了错误

File "C:\Users\PycharmProjects\NNC\venv\lib\site-packages\sklearn\neural_network\_multilayer_perceptron.py", line 325, in _fit
    X, y = self._validate_input(X, y, incremental)
  File "C:\Users\PycharmProjects\NNC\venv\lib\site-packages\sklearn\neural_network\_multilayer_perceptron.py", line 932, in _validate_input
    multi_output=True)
  File "C:\Users\PycharmProjects\NNC\venv\lib\site-packages\sklearn\utils\validation.py", line 739, in check_X_y
    estimator=estimator)
  File "C:\Users\PycharmProjects\NNC\venv\lib\site-packages\sklearn\utils\validation.py", line 459, in check_array
    dtype_orig = np.result_type(*array.dtypes)
  File "<__array_function__ internals>", line 6, in result_type
ValueError: at least one array or dtype is required
Run Code Online (Sandbox Code Playgroud)

进程以退出代码 1 结束

Kal*_*ana 5

由于这些原因会发生此错误。

  1. target的 csv 中没有列。在那里检查两次你的csv。
  2. 如果您有target列,则列中有一个或多个空格targer。它可能像这样存在
< target>
<target >
< target >
<target   >...etc.
Run Code Online (Sandbox Code Playgroud)

在那里复制带有空格的列名。之后运行此代码

data = read_csv('data.csv', usecols=['col_1'])
data.columns = data.columns.str.strip()
Run Code Online (Sandbox Code Playgroud)

更新 -:

如果您的数据框如下所示

       a         b
0      1         2
1      1         2
2      1         2
3      1         2
4      1         2
Run Code Online (Sandbox Code Playgroud)

当你使用 iloc

df_y = data.iloc[:, 0]

output -:
       a         
0      1         
1      1         
2      1         
3      1         
4      1     
Run Code Online (Sandbox Code Playgroud)
df_y = data.iloc[:, 1]   

output -:
       b
0      2
1      2
2      2
3      2
4      2
Run Code Online (Sandbox Code Playgroud)

在您的情况下,您已经使用了df_x = data.iloc[:, 1:]. 更正为df_x = data.iloc[:, 1]。了解 iloc 的工作原理