是什么导致 Cortex-A72 上带有 -O0 而不是 -O3 的简单紧密循环的周期变化如此之大?

sev*_*vko 9 performance assembly arm performancecounter cpu-architecture

我正在运行一些关于为一段代码获得高度一致的运行时的实验。我目前正在计时的代码是一个非常任意的受 CPU 限制的工作负载:

int cpu_workload_external_O3(){
    int x = 0;
    for(int ind = 0; ind < 12349560; ind++){
        x = ((x ^ 0x123) + x * 3) % 123456;
    }
    return x;
}
Run Code Online (Sandbox Code Playgroud)

我编写了一个内核模块,它禁用中断,然后运行上述函数的 10 次试验,通过获取前后时钟周期计数器的差异来对每次试验进行计时。其他注意事项:

  • 该机器是 ARM Cortex-A72,有 4 个插槽,每个插槽有 4 个内核(每个都有自己的 L1 缓存)
  • 时钟频率缩放关闭
  • 不支持超线程
  • 除了一些基本的系统进程外,机器几乎没有运行

换句话说,我相信系统可变性的大多数/所有来源都被考虑在内,尤其是当作为内核模块运行时,通过禁用中断spin_lock_irqsave(),代码应该实现几乎相同的运行到运行性能(可能是一个小的性能损失在第一次运行时,当一些指令第一次被拉入缓存时,但就是这样)。

实际上,当使用 编译基准代码时-O3,我看到平均范围内最多 200 个周期,其中大约 135,845,192 个周期,大多数试验花费的时间完全相同。但是,当使用 编译时-O0,范围高达 ~262,710,916 中的 158,386 个周期。我所说的范围是指最长和最短运行时间之间的差异。此外,对于-O0代码,对于哪个试验是最慢/最快的并没有太大的一致性——与直觉相反,有一次,最快的是第一个,最慢的是紧随其后的!

那么:什么可能导致-O0代码可变性的上限如此之高?查看程序集,-O3代码似乎将所有内容(?)存储在寄存器中,而-O0代码有一堆对等的引用sp,因此它似乎正在访问内存。但即便如此,我还是希望所有内容都能进入 L1 缓存,并以相当确定的访问时间坐在那里。


代码

被基准测试的代码在上面的代码段中。大会如下。两者都是gcc 7.4.0在没有标志的情况下编译的,除了-O0-O3

-O0

0000000000000000 <cpu_workload_external_O0>:
   0:   d10043ff        sub     sp, sp, #0x10
   4:   b9000bff        str     wzr, [sp, #8]
   8:   b9000fff        str     wzr, [sp, #12]
   c:   14000018        b       6c <cpu_workload_external_O0+0x6c>
  10:   b9400be1        ldr     w1, [sp, #8]
  14:   52802460        mov     w0, #0x123                      // #291
  18:   4a000022        eor     w2, w1, w0
  1c:   b9400be1        ldr     w1, [sp, #8]
  20:   2a0103e0        mov     w0, w1
  24:   531f7800        lsl     w0, w0, #1
  28:   0b010000        add     w0, w0, w1
  2c:   0b000040        add     w0, w2, w0
  30:   528aea61        mov     w1, #0x5753                     // #22355
  34:   72a10fc1        movk    w1, #0x87e, lsl #16
  38:   9b217c01        smull   x1, w0, w1
  3c:   d360fc21        lsr     x1, x1, #32
  40:   130c7c22        asr     w2, w1, #12
  44:   131f7c01        asr     w1, w0, #31
  48:   4b010042        sub     w2, w2, w1
  4c:   529c4801        mov     w1, #0xe240                     // #57920
  50:   72a00021        movk    w1, #0x1, lsl #16
  54:   1b017c41        mul     w1, w2, w1
  58:   4b010000        sub     w0, w0, w1
  5c:   b9000be0        str     w0, [sp, #8]
  60:   b9400fe0        ldr     w0, [sp, #12]
  64:   11000400        add     w0, w0, #0x1
  68:   b9000fe0        str     w0, [sp, #12]
  6c:   b9400fe1        ldr     w1, [sp, #12]
  70:   528e0ee0        mov     w0, #0x7077                     // #28791
  74:   72a01780        movk    w0, #0xbc, lsl #16
  78:   6b00003f        cmp     w1, w0
  7c:   54fffcad        b.le    10 <cpu_workload_external_O0+0x10>
  80:   b9400be0        ldr     w0, [sp, #8]
  84:   910043ff        add     sp, sp, #0x10
  88:   d65f03c0        ret
Run Code Online (Sandbox Code Playgroud)

-O3

0000000000000000 <cpu_workload_external_O3>:
   0:   528e0f02        mov     w2, #0x7078                     // #28792
   4:   5292baa4        mov     w4, #0x95d5                     // #38357
   8:   529c4803        mov     w3, #0xe240                     // #57920
   c:   72a01782        movk    w2, #0xbc, lsl #16
  10:   52800000        mov     w0, #0x0                        // #0
  14:   52802465        mov     w5, #0x123                      // #291
  18:   72a043e4        movk    w4, #0x21f, lsl #16
  1c:   72a00023        movk    w3, #0x1, lsl #16
  20:   4a050001        eor     w1, w0, w5
  24:   0b000400        add     w0, w0, w0, lsl #1
  28:   0b000021        add     w1, w1, w0
  2c:   71000442        subs    w2, w2, #0x1
  30:   53067c20        lsr     w0, w1, #6
  34:   9ba47c00        umull   x0, w0, w4
  38:   d364fc00        lsr     x0, x0, #36
  3c:   1b038400        msub    w0, w0, w3, w1
  40:   54ffff01        b.ne    20 <cpu_workload_external_O3+0x20>  // b.any
  44:   d65f03c0        ret
Run Code Online (Sandbox Code Playgroud)

内核模块

运行试验的代码如下。它PMCCNTR_EL0在每次迭代之前/之后读取,将差异存储在数组中,并在所有试验的最后打印出最小/最大时间。函数cpu_workload_external_O0cpu_workload_external_O3位于单独编译的外部目标文件中,然后链接进来。

0000000000000000 <cpu_workload_external_O0>:
   0:   d10043ff        sub     sp, sp, #0x10
   4:   b9000bff        str     wzr, [sp, #8]
   8:   b9000fff        str     wzr, [sp, #12]
   c:   14000018        b       6c <cpu_workload_external_O0+0x6c>
  10:   b9400be1        ldr     w1, [sp, #8]
  14:   52802460        mov     w0, #0x123                      // #291
  18:   4a000022        eor     w2, w1, w0
  1c:   b9400be1        ldr     w1, [sp, #8]
  20:   2a0103e0        mov     w0, w1
  24:   531f7800        lsl     w0, w0, #1
  28:   0b010000        add     w0, w0, w1
  2c:   0b000040        add     w0, w2, w0
  30:   528aea61        mov     w1, #0x5753                     // #22355
  34:   72a10fc1        movk    w1, #0x87e, lsl #16
  38:   9b217c01        smull   x1, w0, w1
  3c:   d360fc21        lsr     x1, x1, #32
  40:   130c7c22        asr     w2, w1, #12
  44:   131f7c01        asr     w1, w0, #31
  48:   4b010042        sub     w2, w2, w1
  4c:   529c4801        mov     w1, #0xe240                     // #57920
  50:   72a00021        movk    w1, #0x1, lsl #16
  54:   1b017c41        mul     w1, w2, w1
  58:   4b010000        sub     w0, w0, w1
  5c:   b9000be0        str     w0, [sp, #8]
  60:   b9400fe0        ldr     w0, [sp, #12]
  64:   11000400        add     w0, w0, #0x1
  68:   b9000fe0        str     w0, [sp, #12]
  6c:   b9400fe1        ldr     w1, [sp, #12]
  70:   528e0ee0        mov     w0, #0x7077                     // #28791
  74:   72a01780        movk    w0, #0xbc, lsl #16
  78:   6b00003f        cmp     w1, w0
  7c:   54fffcad        b.le    10 <cpu_workload_external_O0+0x10>
  80:   b9400be0        ldr     w0, [sp, #8]
  84:   910043ff        add     sp, sp, #0x10
  88:   d65f03c0        ret
Run Code Online (Sandbox Code Playgroud)

硬件

$ lscpu
Architecture:        aarch64
Byte Order:          Little Endian
CPU(s):              16
On-line CPU(s) list: 0-15
Thread(s) per core:  1
Core(s) per socket:  4
Socket(s):           4
NUMA node(s):        1
Vendor ID:           ARM
Model:               3
Model name:          Cortex-A72
Stepping:            r0p3
BogoMIPS:            166.66
L1d cache:           32K
L1i cache:           48K
L2 cache:            2048K
NUMA node0 CPU(s):   0-15
Flags:               fp asimd evtstrm aes pmull sha1 sha2 crc32 cpuid
Run Code Online (Sandbox Code Playgroud)
$ lscpu --extended
CPU NODE SOCKET CORE L1d:L1i:L2 ONLINE
0   0    0      0    0:0:0      yes
1   0    0      1    1:1:0      yes
2   0    0      2    2:2:0      yes
3   0    0      3    3:3:0      yes
4   0    1      4    4:4:1      yes
5   0    1      5    5:5:1      yes
6   0    1      6    6:6:1      yes
7   0    1      7    7:7:1      yes
8   0    2      8    8:8:2      yes
9   0    2      9    9:9:2      yes
10  0    2      10   10:10:2    yes
11  0    2      11   11:11:2    yes
12  0    3      12   12:12:3    yes
13  0    3      13   13:13:3    yes
14  0    3      14   14:14:3    yes
15  0    3      15   15:15:3    yes
Run Code Online (Sandbox Code Playgroud)
$ numactl --hardware
available: 1 nodes (0)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
node 0 size: 32159 MB
node 0 free: 30661 MB
node distances:
node   0
  0:  10
Run Code Online (Sandbox Code Playgroud)

样品测量

下面是内核模块一次执行的一些输出:

[902574.112692] kernel-module: running on cpu 15                                                                                                                                      
[902576.403537] kernel-module: trial 00: 309983568 74097394 98796602 <-- max
[902576.403539] kernel-module: trial 01: 309983562 74097397 98796597                                                                                                                  
[902576.403540] kernel-module: trial 02: 309983562 74097397 98796597                                                                                                                  
[902576.403541] kernel-module: trial 03: 309983562 74097397 98796597
[902576.403543] kernel-module: trial 04: 309983562 74097397 98796597
[902576.403544] kernel-module: trial 05: 309983562 74097397 98796597                                                                                                                  
[902576.403545] kernel-module: trial 06: 309983562 74097397 98796597
[902576.403547] kernel-module: trial 07: 309983562 74097397 98796597
[902576.403548] kernel-module: trial 08: 309983562 74097397 98796597
[902576.403550] kernel-module: trial 09: 309983562 74097397 98796597                                                                                                                  
[902576.403551] kernel-module: trial 10: 309983562 74097397 98796597
[902576.403552] kernel-module: trial 11: 309983562 74097397 98796597
[902576.403554] kernel-module: trial 12: 309983562 74097397 98796597                                                                                                                  
[902576.403555] kernel-module: trial 13: 309849076 74097403 98796630 <-- min
[902576.403557] kernel-module: trial 14: 309983562 74097397 98796597                                                                                                                  
[902576.403558] kernel-module: min time: 309849076
[902576.403559] kernel-module: max time: 309983568                                                                                                                                    
[902576.403560] kernel-module: diff: 134492
Run Code Online (Sandbox Code Playgroud)

对于每个试验,报告的值是:周期数 (0x11)、L1D 访问数 (0x04)、L1I 访问数 (0x14)。我正在使用此 ARM PMU 参考的第 11.8 节)。

Joh*_*pin 4

在最近的 Linux 内核中,自动 NUMA 页面迁移机制会定期删除 TLB 条目,以便它可以监视 NUMA 局部性。即使数据保留在 L1DCache 中,TLB 重新加载也会减慢 O0 代码的速度。

不应在内核页面上激活页面迁移机制。

您检查是否启用了自动 NUMA 页面迁移

$ cat /proc/sys/kernel/numa_balancing
Run Code Online (Sandbox Code Playgroud)

你可以禁用它

$ echo 0 > /proc/sys/kernel/numa_balancing
Run Code Online (Sandbox Code Playgroud)