mrg*_*oom 9 python numpy anaconda conda
我需要降级 numpy 版本:
python -c "import numpy; print(numpy.__version__)"
1.16.4
Run Code Online (Sandbox Code Playgroud)
畅达安装 numpy==1.14.3
Collecting package metadata (current_repodata.json): done
Solving environment: failed with current_repodata.json, will retry with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: failed
Initial quick solve with frozen env failed. Unfreezing env and trying again.
Solving environment: failed
UnsatisfiableError: The following specifications were found to be incompatible with a past
explicit spec that is not an explicit spec in this operation (numpy):
- numpy==1.14.3
The following specifications were found to be incompatible with each other:
Package numpy-base conflicts for:
mkl_random -> numpy[version='>=1.11.3,<2.0a0'] -> mkl_fft[version='>=1.0.6,<2.0a0'] -> numpy-base[version='>=1.0.6,<2.0a0']
mkl_fft -> numpy[version='>=1.11.3,<2.0a0'] -> mkl_random[version='>=1.0.2,<2.0a0'] -> numpy-base[version='>=1.0.2,<2.0a0']
numpy-base
pytorch==1.1.0 -> numpy[version='>=1.11.3,<2.0a0'] -> mkl_random[version='>=1.0.2,<2.0a0'] -> numpy-base[version='>=1.0.2,<2.0a0']
numpy==1.14.3 -> mkl_random[version='>=1.0.2,<2.0a0'] -> numpy-base[version='>=1.0.2,<2.0a0']
Package numpy conflicts for:
mkl_fft -> numpy[version='>=1.11.3,<2.0a0']
mkl_random -> numpy[version='>=1.11.3,<2.0a0']
pytorch==1.1.0 -> numpy[version='>=1.11.3,<2.0a0']
Run Code Online (Sandbox Code Playgroud)
不知道为什么会发生这种情况numpy==1.14.3在范围内numpy[version='>=1.11.3,<2.0a0'],如何解决?
更新:
卸载 viaconda uninstall numpy-base将删除其他不需要的包:
conda uninstall numpy-base
Collecting package metadata (repodata.json): done
Solving environment: done
removed specs:
- numpy-base
The following packages will be REMOVED:
blas-1.0-mkl
cffi-1.12.3-py36h2e261b9_0
cudatoolkit-10.0.130-0
cudnn-7.6.0-cuda10.0_0
intel-openmp-2019.4-243
libgfortran-ng-7.3.0-hdf63c60_0
mkl-2019.4-243
mkl-service-2.0.2-py36h7b6447c_0
mkl_fft-1.0.14-py36ha843d7b_0
mkl_random-1.0.2-py36hd81dba3_0
ninja-1.9.0-py36hfd86e86_0
numpy-1.16.4-py36h7e9f1db_0
numpy-base-1.16.4-py36hde5b4d6_0
pycparser-2.19-py36_0
pytorch-1.1.0-cuda100py36he554f03_0
six-1.12.0-py36_0
Run Code Online (Sandbox Code Playgroud)
小智 12
您可以使用以下命令简单地安装正确的版本
conda install -c conda-forge numpy=1.16.4
Run Code Online (Sandbox Code Playgroud)
conda 将自动处理正确降级到您的版本
如果在 conda 解决环境时降级到特定版本的 numpy 需要很长时间,或者 conda 无法解决冲突,您可以使用 conda-tree 检查依赖关系,然后使用 conda 手动卸载(或尝试降级)不兼容的版本包。但请注意,如果存在许多依赖性,则使用正确的 numpy 版本创建新环境可能会更快(您可以使用 mamba 来加快该过程)。
\nconda install -c conda-forge conda-tree\nconda-tree whoneeds -t numpy\nRun Code Online (Sandbox Code Playgroud)\n这将显示一个树,其中包含每个依赖包支持的 numpy 版本:
\nnumpy==1.20.3\n \xe2\x94\x9c\xe2\x94\x80 h5py 3.2.1 [required: >=1.16.6,<2.0a0]\n \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 tensorflow-base 2.5.0 [required: >=3.1.0]\n \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 tensorflow 2.5.0 [required: 2.5.0, gpu_py37hb3da07e_0]\n \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 tensorflow-gpu 2.5.0 [required: 2.5.0]\n \xe2\x94\x9c\xe2\x94\x80 keras-preprocessing 1.1.2 [required: >=1.9.1]\n \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 tensorflow-base 2.5.0 [required: >=1.1.2]\n \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 dependent packages of tensorflow-base displayed above\n \xe2\x94\x9c\xe2\x94\x80 matplotlib-base 3.4.2 [required: >=1.17.5,<2.0a0]\n \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 matplotlib 3.4.2 [required: >=3.4.2,<3.4.3.0a0]\n \xe2\x94\x9c\xe2\x94\x80 opt_einsum 3.3.0 [required: any]\n \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 tensorflow-base 2.5.0 [required: 3.3.0.*]\n \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 dependent packages of tensorflow-base displayed above\n \xe2\x94\x9c\xe2\x94\x80 pandas 1.2.5 [required: >=1.20.2,<2.0a0]\n \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 statsmodels 0.12.2 [required: >=0.21]\n \xe2\x94\x9c\xe2\x94\x80 patsy 0.5.1 [required: >=1.4.0]\n \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 statsmodels 0.12.2 [required: >=0.5.1]\n \xe2\x94\x9c\xe2\x94\x80 scipy 1.6.2 [required: >=1.16.6,<2.0a0]\n \xe2\x94\x82 \xe2\x94\x9c\xe2\x94\x80 keras-preprocessing 1.1.2 [required: >=0.14]\n \xe2\x94\x82 \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 dependent packages of keras-preprocessing displayed above\n \xe2\x94\x82 \xe2\x94\x9c\xe2\x94\x80 patsy 0.5.1 [required: any]\n \xe2\x94\x82 \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 dependent packages of patsy displayed above\n \xe2\x94\x82 \xe2\x94\x9c\xe2\x94\x80 statsmodels 0.12.2 [required: >=1.0]\n \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 tensorflow-base 2.5.0 [required: >=1.6.2]\n \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 dependent packages of tensorflow-base displayed above\n \xe2\x94\x9c\xe2\x94\x80 statsmodels 0.12.2 [required: >=1.17.0,<2.0a0]\n \xe2\x94\x9c\xe2\x94\x80 tensorboard 2.5.0 [required: >=1.12.0]\n \xe2\x94\x82 \xe2\x94\x9c\xe2\x94\x80 tensorflow 2.5.0 [required: >=2.5.0]\n \xe2\x94\x82 \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 dependent packages of tensorflow displayed above\n \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 tensorflow-base 2.5.0 [required: >=2.5.0,<2.6]\n \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 dependent packages of tensorflow-base displayed above\n \xe2\x94\x9c\xe2\x94\x80 tensorflow-base 2.5.0 [required: >=1.20]\n \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 dependent packages of tensorflow-base displayed above\n \xe2\x94\x94\xe2\x94\x80 tensorflow-estimator 2.5.0 [required: >=1.16.1]\n \xe2\x94\x9c\xe2\x94\x80 tensorflow 2.5.0 [required: >=2.5.0]\n \xe2\x94\x82 \xe2\x94\x94\xe2\x94\x80 dependent packages of tensorflow displayed above\n \xe2\x94\x94\xe2\x94\x80 tensorflow-base 2.5.0 [required: >=2.5.0,<2.6]\n \xe2\x94\x94\xe2\x94\x80 dependent packages of tensorflow-base displayed above\nRun Code Online (Sandbox Code Playgroud)\n
| 归档时间: |
|
| 查看次数: |
15859 次 |
| 最近记录: |