bio*_*ran 10 python deep-learning keras tensorflow
我正在使用简单的RNN 预测时间序列上的EWMA(指数加权移动平均线)公式。已经在这里发布了有关它的信息。
虽然模型使用keras-tf(来自tensorflow导入keras)进行了漂亮的收敛,但使用本地keras(导入keras)却无法使用完全相同的代码。
收敛模型代码(keras-tf):
from tensorflow import keras
import numpy as np
np.random.seed(1337) # for reproducibility
def run_avg(signal, alpha=0.2):
avg_signal = []
avg = np.mean(signal)
for i, sample in enumerate(signal):
if np.isnan(sample) or sample == 0:
sample = avg
avg = (1 - alpha) * avg + alpha * sample
avg_signal.append(avg)
return np.array(avg_signal)
def train():
x = np.random.rand(3000)
y = run_avg(x)
x = np.reshape(x, (-1, 1, 1))
y = np.reshape(y, (-1, 1))
input_layer = keras.layers.Input(batch_shape=(1, 1, 1), dtype='float32')
rnn_layer = keras.layers.SimpleRNN(1, stateful=True, activation=None, name='rnn_layer_1')(input_layer)
model = keras.Model(inputs=input_layer, outputs=rnn_layer)
model.compile(optimizer=keras.optimizers.SGD(lr=0.1), loss='mse')
model.summary()
print(model.get_layer('rnn_layer_1').get_weights())
model.fit(x=x, y=y, batch_size=1, epochs=10, shuffle=False)
print(model.get_layer('rnn_layer_1').get_weights())
train()
Run Code Online (Sandbox Code Playgroud)
没有收敛的模型代码:
from keras import Model
from keras.layers import SimpleRNN, Input
from keras.optimizers import SGD
import numpy as np
np.random.seed(1337) # for reproducibility
def run_avg(signal, alpha=0.2):
avg_signal = []
avg = np.mean(signal)
for i, sample in enumerate(signal):
if np.isnan(sample) or sample == 0:
sample = avg
avg = (1 - alpha) * avg + alpha * sample
avg_signal.append(avg)
return np.array(avg_signal)
def train():
x = np.random.rand(3000)
y = run_avg(x)
x = np.reshape(x, (-1, 1, 1))
y = np.reshape(y, (-1, 1))
input_layer = Input(batch_shape=(1, 1, 1), dtype='float32')
rnn_layer = SimpleRNN(1, stateful=True, activation=None, name='rnn_layer_1')(input_layer)
model = Model(inputs=input_layer, outputs=rnn_layer)
model.compile(optimizer=SGD(lr=0.1), loss='mse')
model.summary()
print(model.get_layer('rnn_layer_1').get_weights())
model.fit(x=x, y=y, batch_size=1, epochs=10, shuffle=False)
print(model.get_layer('rnn_layer_1').get_weights())
train()
Run Code Online (Sandbox Code Playgroud)
而在tf-keras收敛模型中,损耗最小,权重近似为EWMA公式;在非收敛模型中,损耗爆炸至nan。据我所知,唯一的区别是导入类的方式。
我为两种实现使用了相同的随机种子。我正在使用keras 2.2.4和tensorflow版本1.13.1(其中包括版本2.2.4-tf中的keras)的Windows pc,anaconda环境进行工作。
有什么见解吗?
小智 1
这可能是因为TF Keras和Native Keras之间 SimpleRNN 的实现存在差异(1 行)。
下面提到的Line是在TF Keras中实现的,在Keras中没有实现。
self.input_spec = [InputSpec(ndim=3)]
Run Code Online (Sandbox Code Playgroud)
这种差异的一个例子就是您上面提到的。
我想使用SequentialKeras 类来演示类似的情况。
下面的代码适用于 TF Keras:
from tensorflow import keras
import numpy as np
from tensorflow.keras.models import Sequential as Sequential
np.random.seed(1337) # for reproducibility
def run_avg(signal, alpha=0.2):
avg_signal = []
avg = np.mean(signal)
for i, sample in enumerate(signal):
if np.isnan(sample) or sample == 0:
sample = avg
avg = (1 - alpha) * avg + alpha * sample
avg_signal.append(avg)
return np.array(avg_signal)
def train():
x = np.random.rand(3000)
y = run_avg(x)
x = np.reshape(x, (-1, 1, 1))
y = np.reshape(y, (-1, 1))
# SimpleRNN model
model = Sequential()
model.add(keras.layers.Input(batch_shape=(1, 1, 1), dtype='float32'))
model.add(keras.layers.SimpleRNN(1, stateful=True, activation=None, name='rnn_layer_1'))
model.compile(optimizer=keras.optimizers.SGD(lr=0.1), loss='mse')
model.summary()
print(model.get_layer('rnn_layer_1').get_weights())
model.fit(x=x, y=y, batch_size=1, epochs=10, shuffle=False)
print(model.get_layer('rnn_layer_1').get_weights())
train()
Run Code Online (Sandbox Code Playgroud)
但如果我们使用 Native Keras 运行相同的命令,我们会收到如下错误:
TypeError: The added layer must be an instance of class Layer. Found: Tensor("input_1_1:0", shape=(1, 1, 1), dtype=float32)
Run Code Online (Sandbox Code Playgroud)
如果我们替换下面的代码行
model.add(Input(batch_shape=(1, 1, 1), dtype='float32'))
Run Code Online (Sandbox Code Playgroud)
使用下面的代码,
model.add(Dense(32, batch_input_shape=(1,1,1), dtype='float32'))
Run Code Online (Sandbox Code Playgroud)
即使modelKeras 实现也几乎与 TF Keras 实现相似。
如果您想从代码角度了解这两种情况的实现差异,可以参考以下链接:
https://github.com/keras-team/keras/blob/master/keras/layers/recurrent.py#L1082-L1091