zyc*_*zyc 3 math performance-testing simplify julia
在C ++课程中,我学会了一些技巧,例如避免重复计算,使用更多的加法而不是更多的乘法,避免幂等以提高性能。但是,当我尝试使用Julia-Lang优化代码时,我对相反的结果感到惊讶。
例如,以下是一些未进行数学优化的方程式(所有代码都是用Julia 1.1编写的,不是JuliaPro编写的):
function OriginalFunction( a,b,c,d,E )
# Oprations' count:
# sqrt: 4
# ^: 14
# * : 14
# / : 10
# +: 20
# -: 6
# = : 0+4
x1 = (1/(1+c^2))*(-c*d+a+c*b-sqrt(E))
y1 = d-(c^2*d)/(1+c^2)+(c*a)/(1+c^2)+(c^2*b)/(1+c^2)-(c*sqrt(E))/(1+c^2)
x2 = (1/(1+c^2))*(-c*d+a+c*b+sqrt(E))
y2 = d-(c^2*d)/(1+c^2)+(c*a)/(1+c^2)+(c^2*b)/(1+c^2)+(c*sqrt(E))/(1+c^2)
return [ [x1;y1] [x2;y2] ]
end
Run Code Online (Sandbox Code Playgroud)
我用一些技巧优化了它们,包括:
(a*b + a*c) -> a*(b+c)
因为加法比乘法快。a^2 -> a*a
避免电源操作。x = a * (1+c^2); y = b * (1+c^2)
->
temp = 1+c^2
x = a * temp; y = b * temp
Run Code Online (Sandbox Code Playgroud)
1/x -> 1.0/x
结果给出了具有更少运算的等效方程式:
function SimplifiedFunction( a,b,c,d,E )
# Oprations' count:
# sqrt: 1
# ^: 0
# *: 9
# /: 1
# +: 4
# -: 6
# = : 5+4
temp1 = sqrt(E)
temp2 = c*(b - d) + a
temp3 = 1.0/(1.0+c*c)
temp4 = d - (c*(c*(d - b) - a))*temp3
temp5 = (c*temp1)*temp3
x1 = temp3*(temp2-temp1)
y1 = temp4-temp5
x2 = temp3*(temp2+temp1)
y2 = temp4+temp5
return [ [x1;y1] [x2;y2] ]
end
Run Code Online (Sandbox Code Playgroud)
然后,我使用以下功能对它们进行了测试,期望具有更少操作的版本能够更快或更有趣地运行:
function Test2Functions( NumberOfTests::Real )
local num = Int(NumberOfTests)
# -- Generate random numbers
local rands = Array{Float64,2}(undef, 5,num)
for i in 1:num
rands[:,i:i] = [rand(); rand(); rand(); rand(); rand()]
end
local res1 = Array{Array{Float64,2}}(undef, num)
local res2 = Array{Array{Float64,2}}(undef, num)
# - Test OriginalFunction
@time for i in 1:num
a,b,c,d,E = rands[:,i]
res1[i] = OriginalFunction( a,b,c,d,E )
end
# - Test SimplifiedFunction
@time for i in 1:num
a,b,c,d,E = rands[:,i]
res2[i] = SimplifiedFunction( a,b,c,d,E )
end
return res1, res2
end
Test2Functions( 1e6 )
Run Code Online (Sandbox Code Playgroud)
但是,事实证明这两个函数使用相同数量的内存分配,但是简化的一个函数具有更多的垃圾回收时间,并且运行速度慢了大约5%:
julia> Test2Functions( 1e6 )
1.778731 seconds (7.00 M allocations: 503.540 MiB, 47.35% gc time)
1.787668 seconds (7.00 M allocations: 503.540 MiB, 50.92% gc time)
julia> Test2Functions( 1e6 )
1.969535 seconds (7.00 M allocations: 503.540 MiB, 52.05% gc time)
2.221151 seconds (7.00 M allocations: 503.540 MiB, 56.68% gc time)
julia> Test2Functions( 1e6 )
1.946441 seconds (7.00 M allocations: 503.540 MiB, 55.23% gc time)
2.099875 seconds (7.00 M allocations: 503.540 MiB, 59.33% gc time)
julia> Test2Functions( 1e6 )
1.836350 seconds (7.00 M allocations: 503.540 MiB, 53.37% gc time)
2.011242 seconds (7.00 M allocations: 503.540 MiB, 58.43% gc time)
julia> Test2Functions( 1e6 )
1.856081 seconds (7.00 M allocations: 503.540 MiB, 53.44% gc time)
2.002087 seconds (7.00 M allocations: 503.540 MiB, 58.21% gc time)
julia> Test2Functions( 1e6 )
1.833049 seconds (7.00 M allocations: 503.540 MiB, 53.55% gc time)
1.996548 seconds (7.00 M allocations: 503.540 MiB, 58.41% gc time)
julia> Test2Functions( 1e6 )
1.846894 seconds (7.00 M allocations: 503.540 MiB, 53.53% gc time)
2.053529 seconds (7.00 M allocations: 503.540 MiB, 58.30% gc time)
julia> Test2Functions( 1e6 )
1.896265 seconds (7.00 M allocations: 503.540 MiB, 54.11% gc time)
2.083253 seconds (7.00 M allocations: 503.540 MiB, 58.10% gc time)
julia> Test2Functions( 1e6 )
1.910244 seconds (7.00 M allocations: 503.540 MiB, 53.79% gc time)
2.085719 seconds (7.00 M allocations: 503.540 MiB, 58.36% gc time)
Run Code Online (Sandbox Code Playgroud)
谁能告诉我为什么?即使在某些性能关键的代码中,5%的速度可能也不值得争夺,但我仍然很好奇:如何帮助Julia编译器生成更快的代码?
原因是您在第二个循环(而不是第一个循环)中遇到了垃圾回收。如果GC.gc()在循环之前执行此操作,则会得到更多可比较的结果:
function Test2Functions( NumberOfTests::Real )
local num = Int(NumberOfTests)
# -- Generate random numbers
local rands = Array{Float64,2}(undef, 5,num)
for i in 1:num
rands[:,i:i] = [rand(); rand(); rand(); rand(); rand()]
end
local res1 = Array{Array{Float64,2}}(undef, num)
local res2 = Array{Array{Float64,2}}(undef, num)
# - Test OriginalFunction
GC.gc()
@time for i in 1:num
a,b,c,d,E = rands[:,i]
res1[i] = OriginalFunction( a,b,c,d,E )
end
# - Test SimplifiedFunction
GC.gc()
@time for i in 1:num
a,b,c,d,E = rands[:,i]
res2[i] = SimplifiedFunction( a,b,c,d,E )
end
return res1, res2
end
# call this twice as the first time you may have precompilation issues
Test2Functions( 1e6 )
Test2Functions( 1e6 )
Run Code Online (Sandbox Code Playgroud)
但是,通常进行基准测试最好使用BenchmarkTools.jl程序包。
julia> function OriginalFunction()
a,b,c,d,E = rand(5)
x1 = (1/(1+c^2))*(-c*d+a+c*b-sqrt(E))
y1 = d-(c^2*d)/(1+c^2)+(c*a)/(1+c^2)+(c^2*b)/(1+c^2)-(c*sqrt(E))/(1+c^2)
x2 = (1/(1+c^2))*(-c*d+a+c*b+sqrt(E))
y2 = d-(c^2*d)/(1+c^2)+(c*a)/(1+c^2)+(c^2*b)/(1+c^2)+(c*sqrt(E))/(1+c^2)
return [ [x1;y1] [x2;y2] ]
end
OriginalFunction (generic function with 2 methods)
julia>
julia> function SimplifiedFunction()
a,b,c,d,E = rand(5)
temp1 = sqrt(E)
temp2 = c*(b - d) + a
temp3 = 1.0/(1.0+c*c)
temp4 = d - (c*(c*(d - b) - a))*temp3
temp5 = (c*temp1)*temp3
x1 = temp3*(temp2-temp1)
y1 = temp4-temp5
x2 = temp3*(temp2+temp1)
y2 = temp4+temp5
return [ [x1;y1] [x2;y2] ]
end
SimplifiedFunction (generic function with 2 methods)
julia>
julia> using BenchmarkTools
julia> @btime OriginalFunction()
136.211 ns (7 allocations: 528 bytes)
2×2 Array{Float64,2}:
-0.609035 0.954271
0.724708 0.926523
julia> @btime SimplifiedFunction()
137.201 ns (7 allocations: 528 bytes)
2×2 Array{Float64,2}:
0.284514 1.58639
0.922347 0.979835
julia> @btime OriginalFunction()
137.301 ns (7 allocations: 528 bytes)
2×2 Array{Float64,2}:
-0.109814 0.895533
0.365399 1.08743
julia> @btime SimplifiedFunction()
136.429 ns (7 allocations: 528 bytes)
2×2 Array{Float64,2}:
0.516157 1.07871
0.219441 0.361133
Run Code Online (Sandbox Code Playgroud)
而且我们看到它们具有可比的性能。通常,您可以期望Julia和LLVM编译器会为您完成大多数此类优化(当然,并非总是可以保证,但是在这种情况下,似乎确实发生了)。
编辑
我简化了如下功能:
function OriginalFunction( a,b,c,d,E )
x1 = (1/(1+c^2))*(-c*d+a+c*b-sqrt(E))
y1 = d-(c^2*d)/(1+c^2)+(c*a)/(1+c^2)+(c^2*b)/(1+c^2)-(c*sqrt(E))/(1+c^2)
x2 = (1/(1+c^2))*(-c*d+a+c*b+sqrt(E))
y2 = d-(c^2*d)/(1+c^2)+(c*a)/(1+c^2)+(c^2*b)/(1+c^2)+(c*sqrt(E))/(1+c^2)
x1, y1, x2, y2
end
function SimplifiedFunction( a,b,c,d,E )
temp1 = sqrt(E)
temp2 = c*(b - d) + a
temp3 = 1.0/(1.0+c*c)
temp4 = d - (c*(c*(d - b) - a))*temp3
temp5 = (c*temp1)*temp3
x1 = temp3*(temp2-temp1)
y1 = temp4-temp5
x2 = temp3*(temp2+temp1)
y2 = temp4+temp5
x1, y1, x2, y2
end
Run Code Online (Sandbox Code Playgroud)
仅专注于计算的核心并进行计算@code_native。这是它们(删除注释以缩短它们)。
.text
pushq %rbp
movq %rsp, %rbp
subq $112, %rsp
vmovaps %xmm10, -16(%rbp)
vmovaps %xmm9, -32(%rbp)
vmovaps %xmm8, -48(%rbp)
vmovaps %xmm7, -64(%rbp)
vmovaps %xmm6, -80(%rbp)
vmovsd 56(%rbp), %xmm8 # xmm8 = mem[0],zero
vxorps %xmm4, %xmm4, %xmm4
vucomisd %xmm8, %xmm4
ja L229
vmovsd 48(%rbp), %xmm9 # xmm9 = mem[0],zero
vmulsd %xmm9, %xmm3, %xmm5
vsubsd %xmm5, %xmm1, %xmm5
vmulsd %xmm3, %xmm2, %xmm6
vaddsd %xmm5, %xmm6, %xmm10
vmulsd %xmm3, %xmm3, %xmm6
movabsq $526594656, %rax # imm = 0x1F633260
vmovsd (%rax), %xmm7 # xmm7 = mem[0],zero
vaddsd %xmm7, %xmm6, %xmm0
vdivsd %xmm0, %xmm7, %xmm7
vsqrtsd %xmm8, %xmm8, %xmm4
vsubsd %xmm4, %xmm10, %xmm5
vmulsd %xmm5, %xmm7, %xmm8
vmulsd %xmm9, %xmm6, %xmm5
vdivsd %xmm0, %xmm5, %xmm5
vsubsd %xmm5, %xmm9, %xmm5
vmulsd %xmm3, %xmm1, %xmm1
vdivsd %xmm0, %xmm1, %xmm1
vaddsd %xmm5, %xmm1, %xmm1
vmulsd %xmm2, %xmm6, %xmm2
vdivsd %xmm0, %xmm2, %xmm2
vaddsd %xmm1, %xmm2, %xmm1
vmulsd %xmm3, %xmm4, %xmm2
vdivsd %xmm0, %xmm2, %xmm0
vsubsd %xmm0, %xmm1, %xmm2
vaddsd %xmm10, %xmm4, %xmm3
vmulsd %xmm3, %xmm7, %xmm3
vaddsd %xmm1, %xmm0, %xmm0
vmovsd %xmm8, (%rcx)
vmovsd %xmm2, 8(%rcx)
vmovsd %xmm3, 16(%rcx)
vmovsd %xmm0, 24(%rcx)
movq %rcx, %rax
vmovaps -80(%rbp), %xmm6
vmovaps -64(%rbp), %xmm7
vmovaps -48(%rbp), %xmm8
vmovaps -32(%rbp), %xmm9
vmovaps -16(%rbp), %xmm10
addq $112, %rsp
popq %rbp
retq
L229:
movabsq $throw_complex_domainerror, %rax
movl $72381680, %ecx # imm = 0x45074F0
vmovapd %xmm8, %xmm1
callq *%rax
ud2
ud2
nop
Run Code Online (Sandbox Code Playgroud)
和
.text
pushq %rbp
movq %rsp, %rbp
subq $64, %rsp
vmovaps %xmm7, -16(%rbp)
vmovaps %xmm6, -32(%rbp)
vmovsd 56(%rbp), %xmm0 # xmm0 = mem[0],zero
vxorps %xmm4, %xmm4, %xmm4
vucomisd %xmm0, %xmm4
ja L178
vmovsd 48(%rbp), %xmm4 # xmm4 = mem[0],zero
vsqrtsd %xmm0, %xmm0, %xmm0
vsubsd %xmm4, %xmm2, %xmm5
vmulsd %xmm3, %xmm5, %xmm5
vaddsd %xmm1, %xmm5, %xmm5
vmulsd %xmm3, %xmm3, %xmm6
movabsq $526593928, %rax # imm = 0x1F632F88
vmovsd (%rax), %xmm7 # xmm7 = mem[0],zero
vaddsd %xmm7, %xmm6, %xmm6
vdivsd %xmm6, %xmm7, %xmm6
vsubsd %xmm2, %xmm4, %xmm2
vmulsd %xmm3, %xmm2, %xmm2
vsubsd %xmm1, %xmm2, %xmm1
vmulsd %xmm3, %xmm1, %xmm1
vmulsd %xmm1, %xmm6, %xmm1
vsubsd %xmm1, %xmm4, %xmm1
vmulsd %xmm3, %xmm0, %xmm2
vmulsd %xmm2, %xmm6, %xmm2
vsubsd %xmm0, %xmm5, %xmm3
vmulsd %xmm3, %xmm6, %xmm3
vsubsd %xmm2, %xmm1, %xmm4
vaddsd %xmm5, %xmm0, %xmm0
vmulsd %xmm0, %xmm6, %xmm0
vaddsd %xmm1, %xmm2, %xmm1
vmovsd %xmm3, (%rcx)
vmovsd %xmm4, 8(%rcx)
vmovsd %xmm0, 16(%rcx)
vmovsd %xmm1, 24(%rcx)
movq %rcx, %rax
vmovaps -32(%rbp), %xmm6
vmovaps -16(%rbp), %xmm7
addq $64, %rsp
popq %rbp
retq
L178:
movabsq $throw_complex_domainerror, %rax
movl $72381680, %ecx # imm = 0x45074F0
vmovapd %xmm0, %xmm1
callq *%rax
ud2
ud2
nopl (%rax,%rax)
Run Code Online (Sandbox Code Playgroud)
可能您不想详细了解它,但是您会看到简化的功能使用的指令少了一些,但只使用了一些,如果您比较原始代码,这可能会令人惊讶。例如,两个代码sqrt仅调用一次(因此sqrt,对拳头功能的多次调用已优化)。