rya*_*651 5 python machine-learning keras tensorflow eager-execution
我正在尝试在Eager Execution中运行基本的CNN keras模型,但Tensorflow拒绝将模型视为急切的模型。我最初在稳定的1.13分支(最新)中尝试过此操作,请确保启用急切执行而没有结果。我升级到了2.0(最新),但是什么也没有。
class CNN2(tf.keras.Model):
def __init__(self, num_classes=7):
super(CNN2, self).__init__()
self.cnn1 = tf.keras.layers.Conv2D(32, (5,5), padding='same', strides=(2, 2),
kernel_initializer='he_normal')
self.bn1 = tf.keras.layers.BatchNormalization()
self.cnn2 = tf.keras.layers.Conv2D(64, (5,5), padding='same', strides=(2, 2),
kernel_initializer='he_normal')
self.cnn3 = tf.keras.layers.Conv2D(128, (5,5), padding='same', strides=(2, 2),
kernel_initializer='he_normal')
self.bn2 = tf.keras.layers.BatchNormalization()
self.pool = tf.keras.layers.MaxPooling2D((2,2))
self.dnn1 = tf.keras.layers.Dense(128)
self.dropout1 = tf.keras.layers.Dropout(0.45)
self.flatten = tf.keras.layers.Flatten()
self.dnn2 = tf.keras.layers.Dense(512)
self.dnn3 = tf.keras.layers.Dense(256)
self.classifier = tf.keras.layers.Dense(num_classes)
def simpleLoop(self, inputs, x):
#x_Numpy = x.numpy(),
for i, input in inputs:
print("{0} - {1}".format(i,len(input)))
def call(self, inputs, training=None, mask=None):
print(tf.executing_eagerly())
x = tf.nn.leaky_relu(self.cnn1(inputs))
x = self.bn1(x)
x = self.pool(x)
x = tf.nn.leaky_relu(x)
x = tf.nn.leaky_relu(self.bn2(self.cnn2(x)))
x = self.pool(x)
x = self.dropout1(tf.nn.leaky_relu(self.cnn3(x)))
x = self.flatten(x)
self.simpleLoop(inputs, x)
x = self.dropout1(self.dnn1(x))
x = self.dropout1(self.dnn2(x))
x = self.dropout1(self.dnn3(x))
output = self.classifier(x)
#with tf.device('/cpu:0'):
output = tf.nn.softmax(output)
return output
Run Code Online (Sandbox Code Playgroud)
batch_size = 50
epochs = 150
num_classes = 7
Run Code Online (Sandbox Code Playgroud)
print(tf.executing_eagerly())
print(tf.__version__)
>>True
>>2.0.0-alpha0
Run Code Online (Sandbox Code Playgroud)
modelE = CNN2(num_classes)
modelE.run_eagerly = True
print(modelE.run_eagerly)
#model = CNN2(num_classes)
modelE.compile(optimizer=tf.optimizers.Adam(0.00008), loss='categorical_crossentropy',
metrics=['accuracy'], run_eagerly=True)
# TF Keras tries to use entire dataset to determine shape without this step when using .fit()
# Fix = Use exactly one sample from the provided input dataset to determine input/output shape/s for the model
dummy_x = tf.zeros((1, size, size, 1))
modelE._set_inputs(dummy_x)
# Train
hist = modelE.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,
validation_data=(x_test, y_test), verbose=1)
# Evaluate on test set
scores = modelE.evaluate(x_test, y_test, batch_size, verbose=1)
Run Code Online (Sandbox Code Playgroud)
这导致错误
AttributeError: 'Tensor' object has no attribute 'numpy'
当我删除违规行时,x.numpy()我反而得到了这个错误
TypeError: Tensor objects are only iterable when eager execution is enabled. To iterate over this tensor use tf.map_fn.
它还为模型print(tf.executing_eagerly())的def call()方法中的定位打印False 。
如何将其强制进入渴望模式而不是图形?我再次在最新的1.13和2.0版本中进行了尝试。这是错误吗?
我花了一段时间才找到适合我的解决方案tensorflow==2.0.0,所以我想在这里分享它,以防它也对其他人有帮助:
model.compile(run_eagerly=True)
Run Code Online (Sandbox Code Playgroud)
如果这不起作用,您可以尝试在模型编译后强制执行:
model.compile()
model.run_eagerly = True
Run Code Online (Sandbox Code Playgroud)
Alm*_*vid -1
这里所述的解决方案: https: //github.com/tensorflow/tensorflow/issues/26268 应该可以解决问题,还有一个完整的解释是什么导致了这种行为