如何使用 forcats 根据另一个变量的子集(方面)对因子重新排序?

Her*_*sas 4 r forcats

forcats 小插图指出

forcats 包的目标是提供一套有用的工具来解决因子的常见问题

事实上,其中一个工具是通过另一个变量对因子进行重新排序,这是绘制数据时非常常见的用例。我试图用forcats它来实现这一点,但在多面情节的情况下。也就是说,我想通过其他变量对因子重新排序,但仅使用数据的子集。这是一个代表:

library(tidyverse)

ggplot2::diamonds %>% 
    group_by(cut, clarity) %>% 
    summarise(value = mean(table, na.rm = TRUE)) %>%
    ggplot(aes(x = clarity, y = value, color = clarity)) + 
    geom_segment(aes(xend = clarity, y = min(value), yend = value), 
                 size = 1.5, alpha = 0.5) + 
    geom_point(size = 3) + 
    facet_grid(rows = "cut", scales = "free") +
    coord_flip() +
    theme(legend.position = "none")
Run Code Online (Sandbox Code Playgroud)

这段代码产生的图接近我想要的:

在此输入图像描述

但我希望净度轴按值排序,这样我就可以快速找出哪个净度具有最高值。但每个方面都意味着不同的顺序。所以我想选择按特定方面内的值对图进行排序。

当然,在这种情况下,直接使用forcats是行不通的,因为它会根据所有值(而不仅仅是特定方面的值)对因子进行重新排序。我们开始做吧:

# Inserting this line right before the ggplot call
mutate(clarity = forcats::fct_reorder(clarity, value)) %>%
Run Code Online (Sandbox Code Playgroud)

然后它会生成这个图。在此输入图像描述

当然,它根据整个数据对因子进行了重新排序,但是如果我想要按“理想”切割的值对图进行排序,该怎么办?forcats

我当前的解决方案如下:

ggdf <- ggplot2::diamonds %>% 
    group_by(cut, clarity) %>% 
    summarise(value = mean(table, na.rm = TRUE))

# The trick would be to create an auxiliary factor using only
# the subset of the data I want, and then use the levels
# to reorder the factor in the entire dataset.
#
# Note that I use good-old reorder, and not the forcats version
# which I could have, but better this way to emphasize that
# so far I haven't found the advantage of using forcats 
reordered_factor <- reorder(ggdf$clarity[ggdf$cut == "Ideal"], 
                            ggdf$value[ggdf$cut == "Ideal"])

ggdf$clarity <- factor(ggdf$clarity, levels = levels(reordered_factor))

ggdf %>%
    ggplot(aes(x = clarity, y = value, color = clarity)) + 
    geom_segment(aes(xend = clarity, y = min(value), yend = value), 
                 size = 1.5, alpha = 0.5) + 
    geom_point(size = 3) + 
    facet_grid(rows = "cut", scales = "free") +
    coord_flip() +
    theme(legend.position = "none")
Run Code Online (Sandbox Code Playgroud)

这会产生我想要的东西。

在此输入图像描述

但我想知道是否有一种更优雅/聪明的方法来使用forcats.

Uwe*_*Uwe 5

如果您想clarity按特定方面的值重新排序,您必须告诉forcats::fct_reorder()这样做,例如,

mutate(clarity = forcats::fct_reorder(
    clarity, filter(., cut == "Ideal") %>% pull(value)))
Run Code Online (Sandbox Code Playgroud)

它仅使用“理想”方面的值进行重新排序。

因此,

ggplot2::diamonds %>% 
  group_by(cut, clarity) %>% 
  summarise(value = mean(table, na.rm = TRUE)) %>%
  mutate(clarity = forcats::fct_reorder(
    clarity, filter(., cut == "Ideal") %>% pull(value))) %>%
  ggplot(aes(x = clarity, y = value, color = clarity)) + 
  geom_segment(aes(xend = clarity, y = min(value), yend = value), 
               size = 1.5, alpha = 0.5) + 
  geom_point(size = 3) + 
  facet_grid(rows = "cut", scales = "free") +
  coord_flip() +
  theme(legend.position = "none")
Run Code Online (Sandbox Code Playgroud)

创造

在此输入图像描述

按照要求。