EGM*_*686 14 python numpy dataframe pandas
我有这样的DataFrame(简化示例)
id v0 v1 v2 v3 v4
1 10 5 10 22 50
2 22 23 55 60 50
3 8 2 40 80 110
4 15 15 25 100 101
Run Code Online (Sandbox Code Playgroud)
并且如果v0值在v1到v4的值中,则想要创建一个1或0的附加列,如果不是,则创建0.因此,在此示例中,对于id 1,则该值应为1(因为v2 = 10),并且对于id 2值应该为0,因为22不在v1到v4中.
实际上,表格更大(大约100,000行,变量从v1到v99).
use*_*203 12
您可以使用基础numpy数组来提高性能:
建立
a = df.v0.values
b = df.iloc[:, 2:].values
Run Code Online (Sandbox Code Playgroud)
df.assign(out=(a[:, None]==b).any(1).astype(int))
Run Code Online (Sandbox Code Playgroud)
id v0 v1 v2 v3 v4 out
0 1 10 5 10 22 50 1
1 2 22 23 55 60 50 0
2 3 8 2 40 80 110 0
3 4 15 15 25 100 101 1
Run Code Online (Sandbox Code Playgroud)
该解决方案利用广播来进行成对比较:
首先,我们广播a:
>>> a[:, None]
array([[10],
[22],
[ 8],
[15]], dtype=int64)
Run Code Online (Sandbox Code Playgroud)
这允许与以下成对比较b:
>>> a[:, None] == b
array([[False, True, False, False],
[False, False, False, False],
[False, False, False, False],
[ True, False, False, False]])
Run Code Online (Sandbox Code Playgroud)
然后,我们只需检查True沿第一个轴的任何结果,并转换为整数.
性能
功能
def user_chris(df):
a = df.v0.values
b = df.iloc[:, 2:].values
return (a[:, None]==b).any(1).astype(int)
def rahlf23(df):
df = df.set_index('id')
return df.drop('v0', 1).isin(df['v0']).any(1).astype(int)
def chris_a(df):
return df.loc[:, "v1":].eq(df['v0'], 0).any(1).astype(int)
def chris(df):
return df.apply(lambda x: int(x['v0'] in x.values[2:]), axis=1)
def anton_vbr(df):
df.set_index('id', inplace=True)
return df.isin(df.pop('v0')).any(1).astype(int)
Run Code Online (Sandbox Code Playgroud)
建立
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from timeit import timeit
res = pd.DataFrame(
index=['user_chris', 'rahlf23', 'chris_a', 'chris', 'anton_vbr'],
columns=[10, 50, 100, 500, 1000, 5000],
dtype=float
)
for f in res.index:
for c in res.columns:
vals = np.random.randint(1, 100, (c, c))
vals = np.column_stack((np.arange(vals.shape[0]), vals))
df = pd.DataFrame(vals, columns=['id'] + [f'v{i}' for i in range(0, vals.shape[0])])
stmt = '{}(df)'.format(f)
setp = 'from __main__ import df, {}'.format(f)
res.at[f, c] = timeit(stmt, setp, number=50)
ax = res.div(res.min()).T.plot(loglog=True)
ax.set_xlabel("N");
ax.set_ylabel("time (relative)");
plt.show()
Run Code Online (Sandbox Code Playgroud)
产量