Mic*_* S. 4 python machine-learning keras tensorflow transfer-learning
我的任务是根据缺陷对种子进行分类。我有 7 个类的大约 14k 图像(它们的大小不相等,有些类有更多照片,有些类有更少)。我尝试从头开始训练 Inception V3,准确率约为 90%。然后我尝试使用带有 ImageNet 权重的预训练模型进行迁移学习。我inception_v3从applications没有顶级 fc 层的情况下导入,然后在文档中添加了我自己的层。我以以下代码结束:
# Setting dimensions
img_width = 454
img_height = 227
###########################
# PART 1 - Creating Model #
###########################
# Creating InceptionV3 model without Fully-Connected layers
base_model = InceptionV3(weights='imagenet', include_top=False, input_shape = (img_height, img_width, 3))
# Adding layers which will be fine-tunned
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
predictions = Dense(7, activation='softmax')(x)
# Creating final model
model = Model(inputs=base_model.input, outputs=predictions)
# Plotting model
plot_model(model, to_file='inceptionV3.png')
# Freezing Convolutional layers
for layer in base_model.layers:
layer.trainable = False
# Summarizing layers
print(model.summary())
# Compiling the CNN
model.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'])
##############################################
# PART 2 - Images Preproccessing and Fitting #
##############################################
# Fitting the CNN to the images
train_datagen = ImageDataGenerator(rescale = 1./255,
rotation_range=30,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True,
preprocessing_function=preprocess_input,)
valid_datagen = ImageDataGenerator(rescale = 1./255,
preprocessing_function=preprocess_input,)
train_generator = train_datagen.flow_from_directory("dataset/training_set",
target_size=(img_height, img_width),
batch_size = 4,
class_mode = "categorical",
shuffle = True,
seed = 42)
valid_generator = valid_datagen.flow_from_directory("dataset/validation_set",
target_size=(img_height, img_width),
batch_size = 4,
class_mode = "categorical",
shuffle = True,
seed = 42)
STEP_SIZE_TRAIN = train_generator.n//train_generator.batch_size
STEP_SIZE_VALID = valid_generator.n//valid_generator.batch_size
# Save the model according to the conditions
checkpoint = ModelCheckpoint("inception_v3_1.h5", monitor='val_acc', verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1)
early = EarlyStopping(monitor='val_acc', min_delta=0, patience=10, verbose=1, mode='auto')
#Training the model
history = model.fit_generator(generator=train_generator,
steps_per_epoch=STEP_SIZE_TRAIN,
validation_data=valid_generator,
validation_steps=STEP_SIZE_VALID,
epochs=25,
callbacks = [checkpoint, early])
Run Code Online (Sandbox Code Playgroud)
但我得到了可怕的结果:45% 的准确率。我想应该会更好。我有一些假设可能会出现问题:
preprocessing_function=preprocess_input(在网上发现文章非常重要,所以我决定添加它)。rotation_range=30、width_shift_range=0.2、height_shift_range=0.2、 和horizontal_flip = True同时迁移学习以进一步增强数据。还是我在其他方面失败了?
编辑:我发布了训练历史的情节。也许它包含有价值的信息:
EDIT2:随着 InceptionV3 参数的变化:
VGG16 对比:
@今天,我发现一个问题。这是因为批量归一化层及其冻结时的行为发生了一些变化。Chollet先生给出了一个解决方法,但我使用了datumbox制作的Keras fork,这解决了我的问题。主要问题描述如下:
https://github.com/keras-team/keras/pull/9965
现在我的准确率约为 85%,并正在努力提高它。
| 归档时间: |
|
| 查看次数: |
8045 次 |
| 最近记录: |