ken*_*ken 2 python algorithm karatsuba
我想在python中实现Karatsuba乘法。
但是当数字很大时,我得到了正确的答案。
谁能告诉我我的代码哪里错了?
当 x 非常大时,唐叶乘法实现是不正确的。
import math
def fun1(x,y):
if x <= 100 or y<=100:
return x*y
else:
n = int(math.log10(x)) + 1
print(n)
#split x
a = int(x//(10**int(n/2)))
b = int(x%(10**int(n/2)))
#split y
c = int(y//(10**int(n/2)))
d = int(y%(10**int(n/2)) )
print('=======')
print(a,b,c,d)
s1 = fun1(a,c)
s2 = fun1(b,d)
s3 = fun1(a+b, c+d) - s1 -s2
return 10**(n) * s1 + 10**int(n/2) * s3 + s2
x = 3141592653589793238462643383279502884197169399375105820974944592
y = 3141592653589793238462643383279502884197169399375105820974944592
res = fun1(x,y)
print(res)
Run Code Online (Sandbox Code Playgroud)
结果对比如下:
mine: 9871629289354805781531825310608443798018906328629821071675205208766177059699451037253550917606373321601467241501439093564279364
x**2: 9869604401089358618834490999876151135313699407240790626413349374285977301132874762146178862115173871455167598223967837470046464
Run Code Online (Sandbox Code Playgroud)
问题出在函数的最后一行:
return 10**(n) * s1 + 10**int(n/2) * s3 + s2
Run Code Online (Sandbox Code Playgroud)
当n为偶数时,这可以正常工作,但是当n为奇数时,您乘以s110 的幂,比所需的大 1 -s1应该移动的位置正好是 s3 的两倍。
我稍微重构了你的代码。这应该有效:
import math, random
def karatsuba(x,y):
if x <= 100 or y<=100:
return x * y
else:
n = 10 ** int(math.log10(x) / 2.0 + 0.5)
a, b = x // n, x % n
c, d = y // n, y % n
s1 = karatsuba(a,c)
s2 = karatsuba(b,d)
s3 = karatsuba(a+b, c+d) - s1 - s2
return n * n * s1 + n * s3 + s2
for i in range(100):
x = random.randint(1, 2**1024)
y = random.randint(1, 2**1024)
assert karatsuba(x,y) == x * y
else:
print("OK")
Run Code Online (Sandbox Code Playgroud)