bee*_*tty 2 python machine-learning keras gated-recurrent-unit rnn
我尝试用 Keras 构建一个 3 层 RNN。部分代码在这里:
model = Sequential()
model.add(Embedding(input_dim = 91, output_dim = 128, input_length =max_length))
model.add(GRUCell(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
model.add(GRUCell(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
model.add(GRUCell(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
model.add(TimeDistributed(Dense(target.shape[2])))
Run Code Online (Sandbox Code Playgroud)
然后我遇到了这个错误:
call() missing 1 required positional argument: 'states'
Run Code Online (Sandbox Code Playgroud)
错误详情如下:
~/anaconda3/envs/hw3/lib/python3.5/site-packages/keras/models.py in add(self, layer)
487 output_shapes=[self.outputs[0]._keras_shape])
488 else:
--> 489 output_tensor = layer(self.outputs[0])
490 if isinstance(output_tensor, list):
491 raise TypeError('All layers in a Sequential model '
~/anaconda3/envs/hw3/lib/python3.5/site-packages/keras/engine/topology.py in __call__(self, inputs, **kwargs)
601
602 # Actually call the layer, collecting output(s), mask(s), and shape(s).
--> 603 output = self.call(inputs, **kwargs)
604 output_mask = self.compute_mask(inputs, previous_mask)
605
Run Code Online (Sandbox Code Playgroud)
不要直接在 Keras 中使用 Cell 类(即GRUCell或LSTMCell)。它们是由相应层包裹的计算单元。而是使用 Layer 类(即GRU或LSTM):
model.add(GRU(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
model.add(GRU(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
model.add(GRU(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
Run Code Online (Sandbox Code Playgroud)
该LSTM和GRU使用其相应的细胞在所有时间步长进行计算。阅读此SO 答案以了解有关它们差异的更多信息。
当你堆叠在彼此需要其设置的顶部的多个RNN层return_sequences参数True,以便产生每个时步,而这又是使用由下一RNN层的输出。请注意,您可能会也可能不会在最后一个 RNN 层上执行此操作(这取决于您的架构和您尝试解决的问题):
model.add(GRU(units = self.neurons, dropout = self.dropval, bias_initializer = bias, return_sequences=True))
model.add(GRU(units = self.neurons, dropout = self.dropval, bias_initializer = bias, return_sequences=True))
model.add(GRU(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
Run Code Online (Sandbox Code Playgroud)