pra*_*een 3 python numpy keras convolutional-neural-network
我正在尝试构建一个图像分类器,但我遇到了本文标题中提到的错误。下面是我正在处理的代码。我如何将形状为 (8020,) 的 numpy 数组转换为函数 fit() 所需的形状?我试图打印输入形状:train_img_array.shape[1:] 但它给出了一个空形状:()
import numpy as np
img_train.shape
img_valid.shape
img_train.head(5)
img_valid.head(5)
(8020, 4)
(2006, 4)
ID index class data
8030 11596 11596 0 [[[255, 255, 255, 0], [255, 255, 255, 0], [255...
2152 11149 11149 0 [[[255, 255, 255, 0], [255, 255, 255, 0], [255...
550 10015 10015 0 [[[255, 255, 255, 0], [255, 255, 255, 0], [255...
1740 9035 9035 0 [[[255, 255, 255, 0], [255, 255, 255, 0], [255...
9549 8218 8218 1 [[[255, 255, 255, 0], [255, 255, 255, 0], [255...
ID index class data
3312 5481 5481 0 [[[255, 255, 255, 0], [255, 255, 255, 0], [255...
9079 10002 10002 0 [[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], ...
6129 11358 11358 0 [[[255, 255, 255, 0], [255, 255, 255, 0], [255...
1147 2613 2613 1 [[[255, 255, 255, 0], [255, 255, 255, 0], [255...
7105 5442 5442 1 [[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], ...
img_train.dtypes
ID int64
index int64
class int64
data object
dtype: object
train_img_array = np.array([])
train_id_array = np.array([])
train_lab_array = np.array([])
train_id_array = img_train['ID'].values
train_lab_array = img_train['class'].values
train_img_array =img_train['data'].values
train_img_array.shape
train_lab_array.shape
train_id_array.shape
(8020,)
(8020,)
(8020,)
# Importing the Keras libraries and other packages
#matplotlib inline
from __future__ import print_function
import keras
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
from keras.layers import Dropout
Using Theano backend.
WARNING (theano.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
classifier = Sequential()
classifier.add(Conv2D(32, (3, 3), padding='same', activation='relu', input_shape = (256, 256, 3)))
classifier.add(Conv2D(32, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Dropout(0.25))
classifier.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
classifier.add(Conv2D(64, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Dropout(0.25))
classifier.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
classifier.add(Conv2D(64, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Dropout(0.25))
classifier.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
classifier.add(Conv2D(64, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Dropout(0.25))
classifier.add(Flatten())
classifier.add(Dense(units = 256, activation = 'relu'))
classifier.add(Dropout(0.25))
classifier.add(Dense(units = 1, activation = 'sigmoid')) classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
classifier.summary()
batch_size = 32
epochs = 15
history = classifier.fit(train_img_array, train_lab_array, batch_size=batch_size, epochs=epochs, verbose=1,
validation_data=(valid_img_array, valid_lab_array))
classifier.evaluate(valid_img_array, valid_lab_array)
ValueError: Error when checking input: expected conv2d_1_input to have 4 dimensions, but got array with shape (8020, 1)
Run Code Online (Sandbox Code Playgroud)
编辑: - - - - - - - - - - - - - - - - - - - - - - - - ----------- 正如 Nassim 所要求的,在这篇文章中添加了更多细节:
print(train_img_array)
[ array([[[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0],
...,
[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0]],
[[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0],
...,
...,
[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0]]], dtype=uint8)
array([[[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0],
...,
...,
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]]], dtype=uint8)]
print(list(train_img_array))
[array([[[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0],
...,
[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0]],
[[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0],
...,
...,
[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0]]], dtype=uint8), array([[[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0],
...,
print(np.array(list(train_img_array)))
throws the error:
ValueError: could not broadcast input array from shape (700,584,4) into shape (700,584)
Run Code Online (Sandbox Code Playgroud)
所以在使用结果进行调试后:
> print(type(train_img_array[0]))
<type 'numpy.ndarray'>
> print(train_img_array[0].shape)
(700, 584, 4)
> print(rain_img_array[0])
array([[[255, 255, 255, 0], [255, 255, 255, 0], [255, 255, 255, 0], ..., ..., [255, 255, 255, 0], [255, 255, 255, 0], [255, 255, 255, 0]]], dtype=uint8)
Run Code Online (Sandbox Code Playgroud)
我们看到当你这样做时会返回什么:
train_img_array =img_train['data'].values
Run Code Online (Sandbox Code Playgroud)
实际上是一个形状为 (8020, ) 的 numpy 数组,其中所有元素都是包含在图像中的其他 numpy 数组。基本上嵌套了两个 numpy 数组。
所以你想要的是将嵌套数组的嵌套结构扁平化为一个单一的数组对象。我会这样做,它可能有点hacky但应该可以工作,如下:
train_img_array =img_train['data'].values
train_img_array = np.array(list(train_img_array))
Run Code Online (Sandbox Code Playgroud)
所以基本上将numpy数组的numpy数组的结构转换为numpy数组的列表。然后,当您从 numpy 数组列表中构建一个 numpy 数组时,您将获得(神奇)一个多维的 numpy 数组。
此操作后的形状应为 (8020, 700, 584, 4)
现在,我看到您可能会遇到的另一个潜在问题是图像的格式。图像的通道尺寸是最后一个(此处为 4 个通道)。然后,您应该在卷积层中指定:
conv2D(... , data_format="channels_last", )
Run Code Online (Sandbox Code Playgroud)
此外,第一层的输入形状是 (700, 584, 4),而不是 (256, 256, 3)
希望它有效:-)
归档时间: |
|
查看次数: |
2552 次 |
最近记录: |