san*_*oku 0 python nlp r text-mining
给定一些文本,我如何获得 n=1 到 6 之间最常见的 n 元语法?我见过一些方法来获取 3 克或 2 克的方法,一次一个 n,但是有没有办法提取最有意义的最大长度短语以及所有其余的短语?
例如,在本文中仅用于演示目的: 
fri evening commute can be long. some people avoid fri evening commute by choosing off-peak hours. there are much less traffic during off-peak.
n-gram 及其计数器的理想结果是:
fri evening commute: 3,
off-peak: 2,
rest of the words: 1
Run Code Online (Sandbox Code Playgroud)
任何建议表示赞赏。谢谢。
Python
考虑NLTK库,它提供了一个 ngrams 函数,您可以使用它来迭代 n 的值。
粗略的实现将遵循以下内容,其中rough是此处的关键字:
from nltk import ngrams
from collections import Counter
result = []
sentence = 'fri evening commute can be long. some people avoid fri evening commute by choosing off-peak hours. there are much less traffic during off-peak.'
# Since you are not considering periods and treats words with - as phrases
sentence = sentence.replace('.', '').replace('-', ' ')
for n in range(len(sentence.split(' ')), 1, -1):
    phrases = []
    for token in ngrams(sentence.split(), n):
        phrases.append(' '.join(token))
    phrase, freq = Counter(phrases).most_common(1)[0]
    if freq > 1:
        result.append((phrase, n))
        sentence = sentence.replace(phrase, '')
for phrase, freq in result:
    print('%s: %d' % (phrase, freq))
Run Code Online (Sandbox Code Playgroud)
至于R