使用MultiIndex进行过滤

joh*_*uzi 6 python filtering multi-index pandas

我有一个像这样的Pandas DataFrame:

import numpy as np
import pandas as pd

np.random.seed(1234)
midx = pd.MultiIndex.from_product([['a', 'b', 'c'], pd.date_range('20130101', periods=6)], names=['letter', 'date'])
df = pd.DataFrame(np.random.randn(len(midx), 1), index=midx)
Run Code Online (Sandbox Code Playgroud)

该数据框如下所示:

                        0
letter      date    
  a     2013-01-01  0.471435
        2013-01-02  -1.190976
        2013-01-03  1.432707
        2013-01-04  -0.312652
        2013-01-05  -0.720589
        2013-01-06  0.887163
  b     2013-01-01  0.859588
        2013-01-02  -0.636524
        2013-01-03  0.015696
        2013-01-04  -2.242685
        2013-01-05  1.150036
        2013-01-06  0.991946
  c     2013-01-01  0.953324
        2013-01-02  -2.021255
        2013-01-03  -0.334077
        2013-01-04  0.002118
        2013-01-05  0.405453
        2013-01-06  0.289092
Run Code Online (Sandbox Code Playgroud)

我想要做的就是保持基于一个条件的所有行日期取决于该.例如,

  • 对于字母a,我想保留所有行,使日期在"20130102"和"20130105"之间(包括在内)
  • 对于字母b,我想保留所有行,例如date =="20130103"
  • 对于字母c,我想保留所有行,使日期在"20130103"和"20130105"之间(包括在内)

例如,所有这些信息都可以存储在字典中.

dictionary = {"a": slice("20130102", "20130105"),
              "b": "20130103",
              "c": slice("20130103", "20130105")}
Run Code Online (Sandbox Code Playgroud)

有没有一种简单的方法来计算大熊猫?我没有找到任何有关此类过滤的信息.

Zer*_*ero 5

您可以使用query它,它是为这种选择标准而设计的.

如果您稍微修改一下dictionary,可以借助列表推导生成所需的查询:

In : dictionary
Out:
{'a': ('20130102', '20130105'),
 'b': ('20130103', '20130103'),
 'c': ('20130103', '20130105')}

In : df.query(
          ' or '.join("('{}' <= date <= '{}' and letter == '{}')".format(*(v + (k,))) 
          for k, v in dictionary.items())
         )
Out:
                          0
letter date
a      2013-01-02 -1.190976
       2013-01-03  1.432707
       2013-01-04 -0.312652
       2013-01-05 -0.720589
b      2013-01-03  0.015696
c      2013-01-03 -0.334077
       2013-01-04  0.002118
       2013-01-05  0.405453
Run Code Online (Sandbox Code Playgroud)

有关查询语句实际执行操作的更多信息,请参阅列表解析的详细信息:

In : (' or '.join("('{}' <= date <= '{}' and letter == '{}')".format(*(v + (k,)))
          for k, v in dictionary.items()))
Out: "('20130102' <= date <= '20130105' and letter == 'a') or 
          ('20130103' <= date <= '20130105' and letter == 'c') or
          ('20130103' <= date <= '20130103' and letter == 'b')"
Run Code Online (Sandbox Code Playgroud)


Bra*_*mon 2

这是一种笨拙的方式,但你可以利用这样的事实:

传递标签或元组列表的工作方式类似于重新索引[来源]

并利用pd.Index.slice_indexer(start, stop),它可以让您过滤指定日期之间的每个索引。

>>> dictionary = {"a": ("20130102", "20130105"),
...               "b": "20130103",
...               "c": ("20130103", "20130105")}
... 
... 
... def get_idx_pairs():
...     for lvl0, lvl1 in df.index.groupby(df.index.get_level_values(0)).items():
...         dates = lvl1.levels[1]
...         dt = dictionary[lvl0]
...         if isinstance(dt, (tuple, list)):
...             slices = dates[dates.slice_indexer(dt[0], dt[1])]
...             for s in slices:
...                 yield (lvl0, s)
...         else:
...             yield (lvl0, dt)
... 
... 
... df.loc[list(get_idx_pairs())]
... 
                        0
letter date              
a      2013-01-02 -1.1910
       2013-01-03  1.4327
       2013-01-04 -0.3127
       2013-01-05 -0.7206
b      2013-01-03  0.0157
c      2013-01-03 -0.3341
       2013-01-04  0.0021
       2013-01-05  0.4055
Run Code Online (Sandbox Code Playgroud)

对于 中的每个“较小”DatetimeIndex date,您将其限制为指定的切片,然后构造(letter, date)要显式索引的元组。

或者,如果您可以将日期指定为元组(对于单个日期,只需重复),您可以稍微压缩辅助函数:

>>> dates = (("20130102", "20130105"),
...          ("20130103", "20130103"),
...          ("20130103", "20130105"))
... 
... def get_idx_pairs(df, dates):
...     letters = df.index.get_level_values(0)
...     for (k, v), (start, stop) in zip(df.index.groupby(letters).items(), dates):
...         dates = v.levels[1]
...         sliced = dates[dates.slice_indexer(start, stop)]
...         for s in sliced:
...             yield k, s
... 
... df.loc[list(get_idx_pairs(df, dates))]
... 
                        0
letter date              
a      2013-01-02 -1.1910
       2013-01-03  1.4327
       2013-01-04 -0.3127
       2013-01-05 -0.7206
b      2013-01-03  0.0157
c      2013-01-03 -0.3341
       2013-01-04  0.0021
       2013-01-05  0.4055
Run Code Online (Sandbox Code Playgroud)