joh*_*uzi 6 python filtering multi-index pandas
我有一个像这样的Pandas DataFrame:
import numpy as np
import pandas as pd
np.random.seed(1234)
midx = pd.MultiIndex.from_product([['a', 'b', 'c'], pd.date_range('20130101', periods=6)], names=['letter', 'date'])
df = pd.DataFrame(np.random.randn(len(midx), 1), index=midx)
Run Code Online (Sandbox Code Playgroud)
该数据框如下所示:
0
letter date
a 2013-01-01 0.471435
2013-01-02 -1.190976
2013-01-03 1.432707
2013-01-04 -0.312652
2013-01-05 -0.720589
2013-01-06 0.887163
b 2013-01-01 0.859588
2013-01-02 -0.636524
2013-01-03 0.015696
2013-01-04 -2.242685
2013-01-05 1.150036
2013-01-06 0.991946
c 2013-01-01 0.953324
2013-01-02 -2.021255
2013-01-03 -0.334077
2013-01-04 0.002118
2013-01-05 0.405453
2013-01-06 0.289092
Run Code Online (Sandbox Code Playgroud)
我想要做的就是保持基于一个条件的所有行日期取决于该信.例如,
例如,所有这些信息都可以存储在字典中.
dictionary = {"a": slice("20130102", "20130105"),
"b": "20130103",
"c": slice("20130103", "20130105")}
Run Code Online (Sandbox Code Playgroud)
有没有一种简单的方法来计算大熊猫?我没有找到任何有关此类过滤的信息.
您可以使用query
它,它是为这种选择标准而设计的.
如果您稍微修改一下dictionary
,可以借助列表推导生成所需的查询:
In : dictionary
Out:
{'a': ('20130102', '20130105'),
'b': ('20130103', '20130103'),
'c': ('20130103', '20130105')}
In : df.query(
' or '.join("('{}' <= date <= '{}' and letter == '{}')".format(*(v + (k,)))
for k, v in dictionary.items())
)
Out:
0
letter date
a 2013-01-02 -1.190976
2013-01-03 1.432707
2013-01-04 -0.312652
2013-01-05 -0.720589
b 2013-01-03 0.015696
c 2013-01-03 -0.334077
2013-01-04 0.002118
2013-01-05 0.405453
Run Code Online (Sandbox Code Playgroud)
有关查询语句实际执行操作的更多信息,请参阅列表解析的详细信息:
In : (' or '.join("('{}' <= date <= '{}' and letter == '{}')".format(*(v + (k,)))
for k, v in dictionary.items()))
Out: "('20130102' <= date <= '20130105' and letter == 'a') or
('20130103' <= date <= '20130105' and letter == 'c') or
('20130103' <= date <= '20130103' and letter == 'b')"
Run Code Online (Sandbox Code Playgroud)
这是一种笨拙的方式,但你可以利用这样的事实:
传递标签或元组列表的工作方式类似于重新索引[来源]
并利用pd.Index.slice_indexer(start, stop)
,它可以让您过滤指定日期之间的每个索引。
>>> dictionary = {"a": ("20130102", "20130105"),
... "b": "20130103",
... "c": ("20130103", "20130105")}
...
...
... def get_idx_pairs():
... for lvl0, lvl1 in df.index.groupby(df.index.get_level_values(0)).items():
... dates = lvl1.levels[1]
... dt = dictionary[lvl0]
... if isinstance(dt, (tuple, list)):
... slices = dates[dates.slice_indexer(dt[0], dt[1])]
... for s in slices:
... yield (lvl0, s)
... else:
... yield (lvl0, dt)
...
...
... df.loc[list(get_idx_pairs())]
...
0
letter date
a 2013-01-02 -1.1910
2013-01-03 1.4327
2013-01-04 -0.3127
2013-01-05 -0.7206
b 2013-01-03 0.0157
c 2013-01-03 -0.3341
2013-01-04 0.0021
2013-01-05 0.4055
Run Code Online (Sandbox Code Playgroud)
对于 中的每个“较小”DatetimeIndex date
,您将其限制为指定的切片,然后构造(letter, date)
要显式索引的元组。
或者,如果您可以将日期指定为元组(对于单个日期,只需重复),您可以稍微压缩辅助函数:
>>> dates = (("20130102", "20130105"),
... ("20130103", "20130103"),
... ("20130103", "20130105"))
...
... def get_idx_pairs(df, dates):
... letters = df.index.get_level_values(0)
... for (k, v), (start, stop) in zip(df.index.groupby(letters).items(), dates):
... dates = v.levels[1]
... sliced = dates[dates.slice_indexer(start, stop)]
... for s in sliced:
... yield k, s
...
... df.loc[list(get_idx_pairs(df, dates))]
...
0
letter date
a 2013-01-02 -1.1910
2013-01-03 1.4327
2013-01-04 -0.3127
2013-01-05 -0.7206
b 2013-01-03 0.0157
c 2013-01-03 -0.3341
2013-01-04 0.0021
2013-01-05 0.4055
Run Code Online (Sandbox Code Playgroud)