ylc*_*nky 5 amazon-web-services logstash logstash-grok aws-glue
我需要在 AWS Glue Classifie 中定义一个 grok 模式来捕获文件列datestamp
上的毫秒数datetime
(string
由 AWS Glue Crawler转换。我使用了DATESTAMP_EVENTLOG
AWS Glue 中的预定义并尝试将毫秒添加到模式中。
分类: datetime
格罗克模式: %{DATESTAMP_EVENTLOG:string}
自定义模式:
MILLISECONDS (\d){3,7}
DATESTAMP_EVENTLOG %{YEAR}-%{MONTHNUM}-%{MONTHDAY}T%{HOUR}:%{MINUTE}:%{SECOND}.%{MILLISECONDS}
Run Code Online (Sandbox Code Playgroud)
我也无法弄清楚如何使用分类器来做到这一点,但我最终通过向映射脚本(python)编写自定义转换来将时间戳从字符串转换为日期时间。
下面是我的工作代码。col2 是一个将爬虫指定为字符串的列,这里我将其转换为 python 日期时间。
import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
from datetime import datetime
args = getResolvedOptions(sys.argv, ['JOB_NAME'])
sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args['JOB_NAME'], args)
datasource0 = glueContext.create_dynamic_frame.from_catalog(database = "s3_events", table_name = "events", transformation_ctx = "datasource0")
def convert_dates(rec):
rec["col2"] = datetime.strptime(rec["col2"], "%d.%m.%Y")
return rec
custommapping1 = Map.apply(frame = datasource0, f = convert_dates, transformation_ctx = "custommapping1")
applymapping1 = ApplyMapping.apply(frame = custommapping1, mappings = [("col0", "string", "col0", "string"), ("col1", "string", "col1", "string"), ("col2", "date", "col2", "date")], transformation_ctx = "applymapping1")
selectfields2 = SelectFields.apply(frame = applymapping1, paths = ["col2", "col0", "col1"], transformation_ctx = "selectfields2")
resolvechoice3 = ResolveChoice.apply(frame = selectfields2, choice = "MATCH_CATALOG", database = "mydb", table_name = "mytable", transformation_ctx = "resolvechoice3")
resolvechoice4 = ResolveChoice.apply(frame = resolvechoice3, choice = "make_cols", transformation_ctx = "resolvechoice4")
datasink5 = glueContext.write_dynamic_frame.from_catalog(frame = resolvechoice4, database = "mydb", table_name = "mytable", transformation_ctx = "datasink5")
job.commit()
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
4804 次 |
最近记录: |