加入两个间隔不正确的数据帧?

pas*_*asi 9 r lubridate dplyr tidyverse tibble

我正在尝试找到重叠的间隔,并决定将间隔数据加入到自身中,dplyr::left_join()以便我可以将间隔与lubridate::int_overlaps()每个其他间隔进行比较.

这是我期望left_join()的表现方式.两个tibbles具有三行交叉以形成与9行:

library(tidyverse)

tibble(a = rep("a", 3), b = rep(1, 3)) %>% 
  left_join(tibble(a = rep("a", 3), c = rep(2, 3)))
Joining, by = "a"
# A tibble: 9 x 3
      a     b     c
  <chr> <dbl> <dbl>
1     a     1     2
2     a     1     2
3     a     1     2
4     a     1     2
5     a     1     2
6     a     1     2
7     a     1     2
8     a     1     2
9     a     1     2
Run Code Online (Sandbox Code Playgroud)

以下是相同代码对间隔的行为方式.我得到九行,但行不像上面那样交叉:

tibble(a = rep("a", 3), b = rep(make_date(2001) %--% make_date(2002), 3)) %>% 
  left_join(tibble(a = rep("a", 3), c = rep(make_date(2002) %--% make_date(2003))))
Joining, by = "a"
# A tibble: 9 x 3
      a                              b                              c
  <chr>                 <S4: Interval>                 <S4: Interval>
1     a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
2     a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
3     a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
4     a                         NA--NA                         NA--NA
5     a                         NA--NA                         NA--NA
6     a                         NA--NA                         NA--NA
7     a                         NA--NA                         NA--NA
8     a                         NA--NA                         NA--NA
9     a                         NA--NA                         NA--NA
Run Code Online (Sandbox Code Playgroud)

我认为这是意料之外的,但我可能会遗漏一些东西?或者这是一个错误?

我使用 1.7.1, 1.3.4和 0.7.4.

Moo*_*per 7

错误

该对象仍包含相关信息:

res <- tibble(a = rep("a", 3), b = rep(make_date(2001) %--% make_date(2002), 3)) %>% 
  left_join(tibble(a = rep("a", 3), c = rep(make_date(2002) %--% make_date(2003)))) 

print.data.frame(res)
# a                              b                              c
# 1 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
# 2 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
# 3 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
# 4 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
# 5 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
# 6 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
# 7 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
# 8 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
# 9 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC

res$c    
# [1] 2002-01-01 UTC--2003-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
# [5] 2002-01-01 UTC--2003-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
# [9] 2002-01-01 UTC--2003-01-01 UTC
Run Code Online (Sandbox Code Playgroud)

但是当通过索引进行子集化时,它不再起作用:

res_df <- as.data.frame(res)

head(res_df)
  a                              b                              c
1 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
2 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
3 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
4 a                         NA--NA                         NA--NA
5 a                         NA--NA                         NA--NA
6 a                         NA--NA                         NA--NA

res_df[4,"c"]
[1] NA--NA
Run Code Online (Sandbox Code Playgroud)

tibble:::print.tbl利用head.这就是为什么问题立即可见,tibbles而不是data.frames.

打字str(res$b)我们看到start9个data值只有3 个值.

如果我们这样做:

res_df$b@start <- rep(res_df$b@start,3)
res_df$c@start <- rep(res_df$c@start,3)
Run Code Online (Sandbox Code Playgroud)

现在打印好了:

  a                              b                              c
1 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
2 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
3 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
4 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
5 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
6 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
7 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
8 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
9 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
Run Code Online (Sandbox Code Playgroud)

解决方案

我们已经看到这as.data.frame还不够,left_join是功能搞乱了,merge改为使用:

res <- tibble(a = rep("a", 3), b = rep(make_date(2001) %--% make_date(2002), 3)) %>% 
  merge(tibble(a = rep("a", 3), c = rep(make_date(2002) %--% make_date(2003))),
        all.x=TRUE) 

head(res)
# a                              b                              c
# 1 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
# 2 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
# 3 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
# 4 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
# 5 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
# 6 a 2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC

res[4,"c"]
#[1] 2002-01-01 UTC--2003-01-01 UTC
Run Code Online (Sandbox Code Playgroud)

我在这里报告了这个问题

  • 这个[meta issue](https://github.com/tidyverse/dplyr/issues/2432)可以更好地支持`dplyr`中的非基类型.和[本期](https://github.com/hadley/vctrs/issues/27)在vctrs中. (5认同)

pas*_*asi 1

这个问题不再存在,因为这个问题已经关闭并且相关功能已实现。如果您现在使用更新的包运行代码,它将起作用。

library(lubridate)
library(tidyverse)

tibble(a = rep("a", 3), b = rep(make_date(2001) %--% make_date(2002), 3)) %>% 
  left_join(tibble(a = rep("a", 3), c = rep(make_date(2002) %--% make_date(2003))))
#> Joining, by = "a"
#> # A tibble: 9 x 3
#>   a     b                              c                             
#>   <chr> <Interval>                     <Interval>                    
#> 1 a     2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
#> 2 a     2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
#> 3 a     2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
#> 4 a     2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
#> 5 a     2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
#> 6 a     2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
#> 7 a     2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
#> 8 a     2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
#> 9 a     2001-01-01 UTC--2002-01-01 UTC 2002-01-01 UTC--2003-01-01 UTC
Run Code Online (Sandbox Code Playgroud)

由reprex 包(v0.3.0)于 2019-06-07 创建