cs9*_*s95 12 python intervals pandas
Intervalindex
在0.20中有一个名为new 的有趣API ,它允许您创建间隔索引.
给出一些样本数据:
data = [(893.1516130000001, 903.9187099999999),
(882.384516, 893.1516130000001),
(817.781935, 828.549032)]
Run Code Online (Sandbox Code Playgroud)
您可以像这样创建索引:
idx = pd.IntervalIndex.from_tuples(data)
print(idx)
IntervalIndex([(893.151613, 903.91871], (882.384516, 893.151613], (817.781935, 828.549032]]
closed='right',
dtype='interval[float64]')
Run Code Online (Sandbox Code Playgroud)
Interval
s的一个有趣的属性是你可以执行间隔检查in
:
print(y[-1])
Interval(817.78193499999998, 828.54903200000001, closed='right')
print(820 in y[-1])
True
print(1000 in y[-1])
False
Run Code Online (Sandbox Code Playgroud)
我想知道如何将此操作应用于整个索引.例如,给定一些数字900
,我如何检索此数字适合的区间的布尔掩码?
我能想到:
m = [900 in y for y in idx]
print(m)
[True, False, False]
Run Code Online (Sandbox Code Playgroud)
有没有更好的方法来做到这一点?
Jef*_*eff 17
如果您对性能感兴趣,IntervalIndex会针对搜索进行优化.使用.get_loc
或.get_indexer
使用内部构建的IntervalTree(如二叉树),它是在首次使用时构建的.
In [29]: idx = pd.IntervalIndex.from_tuples(data*10000)
In [30]: %timeit -n 1 -r 1 idx.map(lambda x: 900 in x)
92.8 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
In [40]: %timeit -n 1 -r 1 idx.map(lambda x: 900 in x)
42.7 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
# construct tree and search
In [31]: %timeit -n 1 -r 1 idx.get_loc(900)
4.55 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
# subsequently
In [32]: %timeit -n 1 -r 1 idx.get_loc(900)
137 µs ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
# for a single indexer you can do even better (note that this is
# dipping into the impl a bit
In [27]: %timeit np.arange(len(idx))[(900 > idx.left) & (900 <= idx.right)]
203 µs ± 1.55 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Run Code Online (Sandbox Code Playgroud)
请注意,.get_loc()返回一个索引器(实际上它比布尔数组更有用,但它们可以相互转换).
In [38]: idx.map(lambda x: 900 in x)
...:
Out[38]:
Index([ True, False, False, True, False, False, True, False, False, True,
...
False, True, False, False, True, False, False, True, False, False], dtype='object', length=30000)
In [39]: idx.get_loc(900)
...:
Out[39]: array([29997, 9987, 10008, ..., 19992, 19989, 0])
Run Code Online (Sandbox Code Playgroud)
返回布尔数组将转换为索引器数组
In [5]: np.arange(len(idx))[idx.map(lambda x: 900 in x).values.astype(bool)]
Out[5]: array([ 0, 3, 6, ..., 29991, 29994, 29997])
Run Code Online (Sandbox Code Playgroud)
这就是.get_loc()和.get_indexer()返回的内容:
In [6]: np.sort(idx.get_loc(900))
Out[6]: array([ 0, 3, 6, ..., 29991, 29994, 29997])
Run Code Online (Sandbox Code Playgroud)
如果您正在寻找速度,您可以使用 idx 的左侧和右侧,即从范围中获取下限和上限,然后检查数字是否落在界限之间,即
\n\nlist(lower <= 900 <= upper for (lower, upper) in zip(idx.left,idx.right))\n
Run Code Online (Sandbox Code Playgroud)\n\n或者
\n\n[(900 > idx.left) & (900 <= idx.right)]\n
Run Code Online (Sandbox Code Playgroud)\n\n\n[真、假、假]\n\n\n
对于小数据
\n\n%%timeit\nlist(lower <= 900 <= upper for (lower, upper) in zip(idx.left,idx.right))\n100000 loops, best of 3: 11.26 \xc2\xb5s per loop\n\n%%timeit\n[900 in y for y in idx]\n100000 loops, best of 3: 9.26 \xc2\xb5s per loop\n
Run Code Online (Sandbox Code Playgroud)\n\n对于大数据
\n\nidx = pd.IntervalIndex.from_tuples(data*10000)\n\n%%timeit\nlist(lower <= 900 <= upper for (lower, upper) in zip(idx.left,idx.right))\n10 loops, best of 3: 29.2 ms per loop\n\n%%timeit\n[900 in y for y in idx]\n10 loops, best of 3: 64.6 ms per loop\n
Run Code Online (Sandbox Code Playgroud)\n\n对于大数据,此方法胜过您的解决方案。
\n