Pandas Python Groupby 累积和反向

Tra*_*vis 5 python reverse group-by pandas

我发现Pandas groupby 累积总和并发现它非常有用。但是,我想确定如何计算反向累积和。

该链接建议如下。

df.groupby(by=['name','day']).sum().groupby(level=[0]).cumsum()
Run Code Online (Sandbox Code Playgroud)

为了反转总和,我尝试对数据进行切片,但失败了。

df.groupby(by=['name','day']).ix[::-1, 'no'].sum().groupby(level=[0]).cumsum()


Jack | Monday    | 10 | 90
Jack | Tuesday   | 30 | 80
Jack | Wednesday | 50 | 50
Jill | Monday    | 40 | 80
Jill | Wednesday | 40 | 40 
Run Code Online (Sandbox Code Playgroud)

编辑:根据反馈,我尝试实现代码并使数据框更大:

import pandas as pd
df = pd.DataFrame(
    {'name': ['Jack', 'Jack', 'Jack', 'Jill', 'Jill'],
     'surname' : ['Jones','Jones','Jones','Smith','Smith'],
     'car' : ['VW','Mazda','VW','Merc','Merc'],
     'country' : ['UK','US','UK','EU','EU'],
     'year' : [1980,1980,1980,1980,1980],
     'day': ['Monday', 'Tuesday','Wednesday','Monday','Wednesday'],
     'date': ['2016-02-31','2016-01-31','2016-01-31','2016-01-31','2016-01-31'],
     'no': [10,30,50,40,40],
     'qty' : [100,500,200,433,222]})
Run Code Online (Sandbox Code Playgroud)

然后我尝试对许多列进行分组,但未能应用分组。

df = df.groupby(by=['name','surname','car','country','year','day','date']).sum().iloc[::-1].groupby(level=[0]).cumsum().iloc[::-1].reset_index()
Run Code Online (Sandbox Code Playgroud)

为什么会这样?我希望杰克琼斯驾驶马自达汽车与驾驶大众汽车的杰克琼斯是一个单独的累积数量。

jez*_*ael 7

您可以使用 double iloc

df = df.groupby(by=['name','day']).sum().iloc[::-1].groupby(level=[0]).cumsum().iloc[::-1]
print (df)
                no
name day          
Jack Monday     90
     Tuesday    80
     Wednesday  50
Jill Monday     80
     Wednesday  40
Run Code Online (Sandbox Code Playgroud)

对于另一个列解决方案是简化:

df = df.groupby(by=['name','day']).sum()
df['new'] = df.iloc[::-1].groupby(level=[0]).cumsum()
print (df)
                no  new
name day               
Jack Monday     10   90
     Tuesday    30   80
     Wednesday  50   50
Jill Monday     40   80
     Wednesday  40   40
Run Code Online (Sandbox Code Playgroud)

编辑:

第二个groupby需要附加更多级别存在问题-level=[0,1,2]意味着按第一name、第二surname和第三car级别分组。

df1 = (df.groupby(by=['name','surname','car','country','year','day','date'])
        .sum())
print (df1)
                                                      no  qty
name surname car   country year day       date               
Jack Jones   Mazda US      1980 Tuesday   2016-01-31  30  500
             VW    UK      1980 Monday    2016-02-31  10  100
                                Wednesday 2016-01-31  50  200
Jill Smith   Merc  EU      1980 Monday    2016-01-31  40  433
                                Wednesday 2016-01-31  40  222

df2 = (df.groupby(by=['name','surname','car','country','year','day','date'])
        .sum()
        .iloc[::-1]
        .groupby(level=[0,1,2])
        .cumsum()
        .iloc[::-1]
        .reset_index())
print (df2)
   name surname    car country  year        day        date  no  qty
0  Jack   Jones  Mazda      US  1980    Tuesday  2016-01-31  30  500
1  Jack   Jones     VW      UK  1980     Monday  2016-02-31  60  300
2  Jack   Jones     VW      UK  1980  Wednesday  2016-01-31  50  200
3  Jill   Smith   Merc      EU  1980     Monday  2016-01-31  80  655
4  Jill   Smith   Merc      EU  1980  Wednesday  2016-01-31  40  222
Run Code Online (Sandbox Code Playgroud)

或者可以按名称选择 - 请参阅0.20.1+ 中的 groupby 增强功能

df2 = (df.groupby(by=['name','surname','car','country','year','day','date'])
        .sum()
        .iloc[::-1]
        .groupby(['name','surname','car'])
        .cumsum()
        .iloc[::-1]
        .reset_index())
print (df2)

   name surname    car country  year        day        date  no  qty
0  Jack   Jones  Mazda      US  1980    Tuesday  2016-01-31  30  500
1  Jack   Jones     VW      UK  1980     Monday  2016-02-31  60  300
2  Jack   Jones     VW      UK  1980  Wednesday  2016-01-31  50  200
3  Jill   Smith   Merc      EU  1980     Monday  2016-01-31  80  655
4  Jill   Smith   Merc      EU  1980  Wednesday  2016-01-31  40  222
Run Code Online (Sandbox Code Playgroud)