文字的全景拼接

Ala*_* M. 2 opencv panoramas image-stitching

我正在寻找一个好的文本拼接库。我尝试了OpenCVOpenPano。它们都可以在普通照片上很好地工作,但是在文本上却不能。例如,我需要缝合以下3张图像:

第一 第二 第三名

图像之间相互重叠约45%。

如果可以选择使上述库中的一个在文本图像上运行良好,而不是查找另一个库,那将是很好的选择。

  • 我需要该库才能在linux arm上工作。

Elo*_*ine 5

OpenPano无法缝合文本,因为它无法检索足够的特征点(或关键点)来进行缝合过程。

文字拼接不需要一种对旋转具有鲁棒性的匹配方法,而仅对翻译具有鲁棒性。OpenCV方便地提供了这样的功能。它称为:模板匹配

我将开发的解决方案基于此OpenCV的功能。


管道

现在,我将解释解决方案的主要步骤(有关更多详细信息,请参见下面提供的代码)。

匹配过程

为了匹配两个连续的图像(在matchImages函数中完成,请参见下面的代码):

  1. 我们通过获取第一张图片的45%()来创建模板图片,H_templ_ratio如下所示:

模板,原始图像的45%

该步骤是通过函数在我的代码中完成的genTemplate

  1. 我们将黑边距添加到第二个图像(我们要在其中找到模板)。如果文本在输入图像中未对齐,则必须执行此步骤(尽管在这些示例图像中就是这种情况)。这是边距处理后图像的外观。如您所见,仅在图像下面和下面需要边距:

仅在下面和下面需要边距

理论上,模板图像可以在该空白图像中的任何位置找到。该过程在addBlackMargins功能中完成。

  1. 我们在模板图像和我们要查找的图像上都应用了canny过滤器(在函数内部完成)。这将增加稳健性匹配过程。这是一个例子:Mat2Edges

康尼滤镜的例子

  1. 我们 使用来将模板与图像进行matchTemplate匹配,并使用minMaxLoc函数来检索最佳匹配位置。

计算最终图像尺寸

此步骤包括计算最终矩阵大小,在这里我们将所有图像拼接在一起。如果所有输入图像的高度都不相同,则特别需要此设置。

此步骤在calcFinalImgSize函数内部完成。我不会在这里讨论太多细节,因为尽管它看起来有点复杂(至少对我而言),但这只是简单的数学运算(加法,减法,乘法)。如果您想了解这些公式,请用笔和纸。

拼接过程

一旦我们拥有了比赛地点为每个输入图像,我们只需要做简单的数学要复制输入图像中的正确的位置最终图像。再次,我建议您检查代码以了解实现的详细信息(请参见stitchImages功能)。


结果

这是输入图像的结果:

提供样品的最终结果

如您所见,结果不是“ 完美像素 ”,但对于OCR来说应该足够好了。

这是不同高度的输入图像的另一个结果:

不同高度的图像的结果


程式码(Python)

我的程序是用Python编写的,并且使用cv2(OpenCV)和numpy模块。但是,它可以(轻松地)以其他语言(例如C ++JavaC#)移植。

import numpy as np
import cv2

def genTemplate(img): 
    global H_templ_ratio
    # we get the image's width and height
    h, w = img.shape[:2]
    # we compute the template's bounds
    x1 = int(float(w)*(1-H_templ_ratio))
    y1 = 0
    x2 = w
    y2 = h
    return(img[y1:y2,x1:x2]) # and crop the input image

def mat2Edges(img): # applies a Canny filter to get the edges
    edged = cv2.Canny(img, 100, 200)
    return(edged)

def addBlackMargins(img, top, bottom, left, right): # top, bottom, left, right: margins width in pixels
    h, w = img.shape[:2]
    result = np.zeros((h+top+bottom, w+left+right, 3), np.uint8)
    result[top:top+h,left:left+w] = img
    return(result)

# return the y_offset of the first image to stitch and the final image size needed
def calcFinalImgSize(imgs, loc):
    global V_templ_ratio, H_templ_ratio
    y_offset = 0
    max_margin_top = 0; max_margin_bottom = 0 # maximum margins that will be needed above and bellow the first image in order to stitch all the images into one mat
    current_margin_top = 0; current_margin_bottom = 0

    h_init, w_init = imgs[0].shape[:2]
    w_final = w_init

    for i in range(0,len(loc)):
        h, w = imgs[i].shape[:2]
        h2, w2 = imgs[i+1].shape[:2]
        # we compute the max top/bottom margins that will be needed (relatively to the first input image) in order to stitch all the images
        current_margin_top += loc[i][1] # here, we assume that the template top-left corner Y-coordinate is 0 (relatively to its original image)
        current_margin_bottom += (h2 - loc[i][1]) - h
        if(current_margin_top > max_margin_top): max_margin_top = current_margin_top
        if(current_margin_bottom > max_margin_bottom): max_margin_bottom = current_margin_bottom
        # we compute the width needed for the final result
        x_templ = int(float(w)*H_templ_ratio) # x-coordinate of the template relatively to its original image
        w_final += (w2 - x_templ - loc[i][0]) # width needed to stitch all the images into one mat

    h_final = h_init + max_margin_top + max_margin_bottom
    return (max_margin_top, h_final, w_final)

# match each input image with its following image (1->2, 2->3) 
def matchImages(imgs, templates_loc):
    for i in range(0,len(imgs)-1):
        template = genTemplate(imgs[i])
        template = mat2Edges(template)
        h_templ, w_templ = template.shape[:2]
        # Apply template Matching
        margin_top = margin_bottom = h_templ; margin_left = margin_right = 0
        img = addBlackMargins(imgs[i+1],margin_top, margin_bottom, margin_left, margin_right) # we need to enlarge the input image prior to call matchTemplate (template needs to be strictly smaller than the input image)
        img = mat2Edges(img)
        res = cv2.matchTemplate(img,template,cv2.TM_CCOEFF) # matching function
        _, _, _, templ_pos = cv2.minMaxLoc(res) # minMaxLoc gets the best match position
        # as we added margins to the input image we need to subtract the margins width to get the template position relatively to the initial input image (without the black margins)
        rectified_templ_pos = (templ_pos[0]-margin_left, templ_pos[1]-margin_top) 
        templates_loc.append(rectified_templ_pos)
        print("max_loc", rectified_templ_pos)

def stitchImages(imgs, templates_loc):
    y_offset, h_final, w_final = calcFinalImgSize(imgs, templates_loc) # we calculate the "surface" needed to stitch all the images into one mat (and y_offset, the Y offset of the first image to be stitched) 
    result = np.zeros((h_final, w_final, 3), np.uint8)

    #initial stitch
    h_init, w_init = imgs[0].shape[:2]
    result[y_offset:y_offset+h_init, 0:w_init] = imgs[0]
    origin = (y_offset, 0) # top-left corner of the last stitched image (y,x)
    # stitching loop
    for j in range(0,len(templates_loc)):
        h, w = imgs[j].shape[:2]
        h2, w2 = imgs[j+1].shape[:2]
        # we compute the coordinates where to stitch imgs[j+1]
        y1 = origin[0] - templates_loc[j][1]
        y2 = origin[0] - templates_loc[j][1] + h2
        x_templ = int(float(w)*(1-H_templ_ratio)) # x-coordinate of the template relatively to its original image's right side
        x1 = origin[1] + x_templ - templates_loc[j][0]
        x2 = origin[1] + x_templ - templates_loc[j][0] + w2
        result[y1:y2, x1:x2] = imgs[j+1] # we copy the input image into the result mat
        origin = (y1,x1) # we update the origin point with the last stitched image

    return(result)

if __name__ == '__main__':

    # input images
    part1 = cv2.imread('part1.jpg')
    part2 = cv2.imread('part2.jpg')
    part3 = cv2.imread('part3.jpg')
    imgs = [part1, part2, part3]

    H_templ_ratio = 0.45 # H_templ_ratio: horizontal ratio of the input that we will keep to create a template
    templates_loc = [] # templates location

    matchImages(imgs, templates_loc)

    result = stitchImages(imgs, templates_loc)

    cv2.imshow("result", result)
Run Code Online (Sandbox Code Playgroud)