piR*_*red 13 python numpy pandas
definition
factorize:将每个唯一对象映射到一个唯一的整数.通常,映射到的整数范围是从零到n - 1,其中n是唯一对象的数量.两种变化也是典型的.类型1是编号以识别唯一对象的顺序发生的位置.类型2是首先对唯一对象进行排序的位置,然后应用与类型1中相同的过程.
安装程序
考虑元组列表tups
tups = [(1, 2), ('a', 'b'), (3, 4), ('c', 5), (6, 'd'), ('a', 'b'), (3, 4)]
Run Code Online (Sandbox Code Playgroud)
我想将其分解为
[0, 1, 2, 3, 4, 1, 2]
Run Code Online (Sandbox Code Playgroud)
我知道有很多方法可以做到这一点.但是,我希望尽可能高效地完成这项工作.
我试过的
pandas.factorize 并得到一个错误......
pd.factorize(tups)[0]
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-84-c84947ac948c> in <module>()
----> 1 pd.factorize(tups)[0]
//anaconda/envs/3.6/lib/python3.6/site-packages/pandas/core/algorithms.py in factorize(values, sort, order, na_sentinel, size_hint)
553 uniques = vec_klass()
554 check_nulls = not is_integer_dtype(original)
--> 555 labels = table.get_labels(values, uniques, 0, na_sentinel, check_nulls)
556
557 labels = _ensure_platform_int(labels)
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_labels (pandas/_libs/hashtable.c:21804)()
ValueError: Buffer has wrong number of dimensions (expected 1, got 2)
Run Code Online (Sandbox Code Playgroud)
或者numpy.unique得到错误的结果......
np.unique(tups, return_inverse=1)[1]
array([0, 1, 6, 7, 2, 3, 8, 4, 5, 9, 6, 7, 2, 3])
Run Code Online (Sandbox Code Playgroud)
我可以在元组的哈希上使用其中任何一个
pd.factorize([hash(t) for t in tups])[0]
array([0, 1, 2, 3, 4, 1, 2])
Run Code Online (Sandbox Code Playgroud)
好极了!这就是我想要的......那么问题是什么?
第一个问题
看看这种技术的性能下降
lst = [10, 7, 4, 33, 1005, 7, 4]
%timeit pd.factorize(lst * 1000)[0]
1000 loops, best of 3: 506 µs per loop
%timeit pd.factorize([hash(i) for i in lst * 1000])[0]
1000 loops, best of 3: 937 µs per loop
Run Code Online (Sandbox Code Playgroud)
第二个问题
Hashing不保证是唯一的!
问题
什么是分解元组列表的超快速方法?
两个轴的定时
都在对数空间中
code
from itertools import count
def champ(tups):
d = {}
c = count()
return np.array(
[d[tup] if tup in d else d.setdefault(tup, next(c)) for tup in tups]
)
def root(tups):
return pd.Series(tups).factorize()[0]
def iobe(tups):
return np.unique(tups, return_inverse=True, axis=0)[1]
def get_row_view(a):
void_dt = np.dtype((np.void, a.dtype.itemsize * np.prod(a.shape[1:])))
a = np.ascontiguousarray(a)
return a.reshape(a.shape[0], -1).view(void_dt).ravel()
def diva(tups):
return np.unique(get_row_view(np.array(tups)), return_inverse=1)[1]
def gdib(tups):
return pd.factorize([str(t) for t in tups])[0]
from string import ascii_letters
def tups_creator_1(size, len_of_str=3, num_ints_to_choose_from=1000, seed=None):
c = len_of_str
n = num_ints_to_choose_from
np.random.seed(seed)
d = pd.DataFrame(np.random.choice(list(ascii_letters), (size, c))).sum(1).tolist()
i = np.random.randint(n, size=size)
return list(zip(d, i))
results = pd.DataFrame(
index=pd.Index([100, 1000, 5000, 10000, 20000, 30000, 40000, 50000], name='Size'),
columns=pd.Index('champ root iobe diva gdib'.split(), name='Method')
)
for i in results.index:
tups = tups_creator_1(i, max(1, int(np.log10(i))), max(10, i // 10))
for j in results.columns:
stmt = '{}(tups)'.format(j)
setup = 'from __main__ import {}, tups'.format(j)
results.set_value(i, j, timeit(stmt, setup, number=100) / 100)
results.plot(title='Avg Seconds', logx=True, logy=True)
Run Code Online (Sandbox Code Playgroud)
一个简单的方法是使用a dict来保持以前的访问:
>>> d = {}
>>> [d.setdefault(tup, i) for i, tup in enumerate(tups)]
[0, 1, 2, 3, 4, 1, 2]
Run Code Online (Sandbox Code Playgroud)
如果您需要保持数字顺序,那么稍微改变:
>>> from itertools import count
>>> c = count()
>>> [d[tup] if tup in d else d.setdefault(tup, next(c)) for tup in tups]
[0, 1, 2, 3, 4, 1, 2, 5]
Run Code Online (Sandbox Code Playgroud)
或者写成:
>>> [d.get(tup) or d.setdefault(tup, next(c)) for tup in tups]
[0, 1, 2, 3, 4, 1, 2, 5]
Run Code Online (Sandbox Code Playgroud)
将元组列表初始化为系列,然后调用factorize:
pd.Series(tups).factorize()[0]
[0 1 2 3 4 1 2]
Run Code Online (Sandbox Code Playgroud)