测试 R 中的缺失值

The*_*oat 5 r missing-data imputation imputets

我有一个时间序列数据集,其中有一些缺失值。我想估算缺失值,但我不确定哪种方法最合适,例如包中的线性、样条或 stine imputeTS

为了完整起见,我想测试一下我的数据是否是 MCAR、MAR、NMAR。我有一个合理的想法,它是 MCAR,但我有兴趣进行测试。

str(wideRawDF)
'data.frame':   1343 obs. of  13 variables:
 $ Period.Start.Time: POSIXct, format: "2017-01-20 16:30:00" "2017-01-20 16:45:00" "2017-01-20 17:00:00" "2017-01-20 17:15:00" ...
 $ DO0182U09A3      : num  -102 -101 -101 -101 -101 ...
 $ DO0182U09B3      : num  -103.4 -102.8 -103.3 -95.9 -103 ...
 $ DO0182U09C3      : num  -103.9 -104.2 -103.9 -99.2 -104.1 ...
 $ DO0182U21A1      : num  -105 -105 -105 -104 -102 ...
 $ DO0182U21A2      : num  -105 -104 -105 -105 -105 ...
 $ DO0182U21A3      : num  -105 -105 -105 -105 -105 ...
 $ DO0182U21B1      : num  -102 -103 -104 -104 -104 ...
 $ DO0182U21B2      : num  -99.4 -102 -104 -101.4 -104.1 ...
 $ DO0182U21B3      : num  -104 -104 -104 -104 -104 ...
 $ DO0182U21C1      : num  -105 -105 -105 -104 -105 ...
 $ DO0182U21C2      : num  -104 -105 -105 -103 -105 ...
 $ DO0182U21C3      : num  -105 -105 -105 -105 -105 ...

md.pattern(wideRawDF)
     Period.Start.Time DO0182U21C1 DO0182U21C2 DO0182U21C3 DO0182U21B1 DO0182U21B2 DO0182U21B3 DO0182U09A3 DO0182U09B3 DO0182U09C3 DO0182U21A1 DO0182U21A2
1327                 1           1           1           1           1           1           1           1           1           1           1           1
   3                 1           1           1           1           1           1           1           0           1           1           1           1
   1                 1           1           1           1           1           1           1           1           0           1           1           1
   2                 1           1           1           1           1           1           1           1           1           0           1           1
   1                 1           1           1           1           1           1           1           0           1           1           0           0
   1                 1           1           1           1           1           1           1           0           0           1           0           0
   3                 1           1           1           1           1           1           1           1           0           0           0           0
   2                 1           1           1           1           1           1           1           0           0           0           0           0
   3                 1           1           1           1           0           0           0           1           0           0           0           0
                     0           0           0           0           3           3           3           7          10          10          10          10
     DO0182U21A3   
1327           1  0
   3           1  1
   1           1  1
   2           1  1
   1           0  4
   1           0  5
   3           0  5
   2           0  6
   3           0  8
              10 66
Run Code Online (Sandbox Code Playgroud)

如您所见,我的 DF 中的某些列没有 NA 值。我希望仅将具有 NATestMCARNormality的列传递给 MissMech 包中的函数。

我已经尝试了以下但我不断收到同样的错误:

> TestMCARNormality(wideRawDF[,3:4])
Warning: 8 Cases with all variables missing have been removed 

          from the data.
Warning: More than one missing data pattern should be present. 
Run Code Online (Sandbox Code Playgroud)

使用 colnames 我得到了我引用 md.pattern 的上述输出的列的索引,以确保我使用的是具有 NA 值的列。

> colnames(wideRawDF)
 [1] "Period.Start.Time" "DO0182U09A3"       "DO0182U09B3"       "DO0182U09C3"       "DO0182U21A1"       "DO0182U21A2"       "DO0182U21A3"       "DO0182U21B1"      
 [9] "DO0182U21B2"       "DO0182U21B3"       "DO0182U21C1"       "DO0182U21C2"       "DO0182U21C3"
Run Code Online (Sandbox Code Playgroud)

测试缺失值并仅将带有 NA 的列传递给TestMCARNormality函数的智能方法是什么?

Sim*_*son 3

根据评论,您可以使用以下内容:

has_na <- sapply(wideRawDF, function(x) any(is.na(x)))
TestMCARNormality(wideRawDF[has_na])
Run Code Online (Sandbox Code Playgroud)

has_na是对应于 的每一列的布尔向量wideRawDF。对于其中至少有一个缺失值的任何列,该值为 TRUE。

因此,wideRawDF[has_na]是您的数据框wideRawDF,但只有具有缺失值的列。