我有一个矩阵 M1 ,其中每一行都是一个与时间相关的信号。
我还有另一个相同维度的矩阵 M2,其每一行也是一个时间相关信号,用作“模板”,用于识别第一个矩阵中的信号形状。
我想要一个列向量 v,其中 v [i] 是 M1 第 i 行和 M2 第 i 行之间的相关性。
我研究了 numpy 的 corrcoef 函数并尝试了以下代码:
import numpy as np
M1 = np.array ([
[1, 2, 3, 4],
[2, 3, 1, 4]
])
M2 = np.array ([
[10, 20, 30, 40],
[20, 30, 10, 40]
])
print (np.corrcoef (M1, M2))
Run Code Online (Sandbox Code Playgroud)
打印:
[[ 1. 0.4 1. 0.4]
[ 0.4 1. 0.4 1. ]
[ 1. 0.4 1. 0.4]
[ 0.4 1. 0.4 1. ]]
Run Code Online (Sandbox Code Playgroud)
我一直在阅读文档,但我仍然对必须选择该矩阵的哪些条目作为向量 v 的条目感到困惑。
有人可以帮忙吗?
(我已经研究了类似问题的几个答案,但还没有看到曙光......)
代码上下文:
有 256 行(信号),我在“主信号”上运行 200 个样本的滑动窗口,该信号的长度为 10k 个样本。所以 M1 和 M2 都是 256 行 x 200 列。对于错误的 10k 样本,我们深表歉意。这就是信号的总长度。通过使用与滑动模板的相关性,我尝试找到模板最匹配的偏移量。实际上,我正在寻找 256 通道侵入性心电图(或者更确切地说,医生所说的电描记图)中的 QRS 复合波。
lg.info ('Processor: {}, time: {}, markers: {}'.format (self.key, dt.datetime.now ().time (), len (self.data.markers)))
# Compute average signal shape over preexisting markers and uses that as a template to find the others.
# All generated markers will have the width of the widest preexisting one.
template = np.zeros ((self.data.samples.shape [0], self.bufferWidthSteps))
# Add intervals that were marked in advance
nrOfTerms = 0
maxWidthSteps = 0
newMarkers = []
for marker in self.data.markers:
if marker.key == self.markerKey:
# Find start and stop sample index
startIndex = marker.tSteps - marker.stampWidthSteps // 2
stopIndex = marker.tSteps + marker.stampWidthSteps // 2
# Extract relevant slice from samples and add it to template
template += np.hstack ((self.data.samples [ : , startIndex : stopIndex], np.zeros ((self.data.samples.shape [0], self.bufferWidthSteps - marker.stampWidthSteps))))
# Adapt nr of added terms to facilitate averaging
nrOfTerms += 1
# Remember maximum width of previously marked QRS complexes
maxWidthSteps = max (maxWidthSteps, marker.stampWidthSteps)
else:
# Preexisting markers with non-matching keys are just copied to the new marker list
# Preexisting markers with a matching key are omitted from the new marker list
newMarkers.append (marker)
# Compute average of intervals that were marked in advance
template = template [ : , 0 : maxWidthSteps] / nrOfTerms
halfWidthSteps = maxWidthSteps // 2
# Append markers of intervals that yield an above threshold correlation with the averaged marked intervals
firstIndex = 0
stopIndex = self.data.samples.shape [1] - maxWidthSteps
while firstIndex < stopIndex:
corr = np.corrcoef (
template,
self.data.samples [ : , firstIndex : firstIndex + maxWidthSteps]
)
diag = np.diagonal (
corr,
template.shape [0]
)
meanCorr = np.mean (diag)
if meanCorr > self.correlationThreshold:
newMarkers.append ([self.markerFactories [self.markerKey] .make (firstIndex + halfWidthSteps, maxWidthSteps)])
# Prevent overlapping markers
firstIndex += maxWidthSteps
else:
firstIndex += 5
self.data.markers = newMarkers
lg.info ('Processor: {}, time: {}, markers: {}'.format (self.key, dt.datetime.now ().time (), len (self.data.markers)))
Run Code Online (Sandbox Code Playgroud)
我认为是这样的:(如有错误,请指正!)
import numpy as np
M1 = np.array ([
[1, 2, 3, 4],
[2, 3, 1, 4.5]
])
M2 = np.array ([
[10, 20, 33, 40],
[20, 35, 15, 40]
])
v = np.diagonal (np.corrcoef (M1, M2), M1.shape [0])
print (v)
Run Code Online (Sandbox Code Playgroud)
哪个打印:
[ 0.99411402 0.96131896]
Run Code Online (Sandbox Code Playgroud)
由于它只有一维,我可以将其视为列向量......