cal*_*tad 18 algorithm design-patterns data-modeling data-structures
我正在寻找一个模式,算法或库,它将采用一组日期并返回一个退出的描述,如果一个退出,即集[11-01-2010,11-08-2010,11-15-2010 ,11-22-2010,11-29-2010]会产生类似"11月的每个星期一".
有没有人见过这样的事情,或者对实施它的最佳方法有任何建议?
Jos*_*aum 14
语法进化(GE)适用于此类问题,因为您正在寻找符合某种语言的答案.语法进化也用于程序生成,音乐创作,设计等.
我会像这样接近任务:
用语法构造问题空间.
构造一个可以表示所有期望的重复模式的无上下文语法.考虑以下生产规则:
datepattern -> datepattern 'and' datepattern
datepattern -> frequency bounds
frequency -> 'every' ordinal weekday 'of the month'
frequency -> 'every' weekday
ordinal -> ordinal 'and' ordinal
ordinal -> 'first' | 'second' | 'third'
bounds -> 'in the year' year
Run Code Online (Sandbox Code Playgroud)
这些规则产生的模式的一个例子是:"2010年的每个月的第二个和第三个星期三以及2011年的每个星期二"
实现这种语法的一种方法是通过类层次结构,稍后您将通过反射进行操作,正如我在下面的示例中所做的那样.
将此语言映射到一组日期
您应该创建一个函数,该函数从您的语言中获取子句,并递归返回它所涵盖的所有日期的集合.这允许您比较输入的答案.
在语法的指导下,寻找潜在的解决方案
您可以使用遗传算法或模拟退火来将日期与语法相匹配,尝试使用动态编程,或者通过对所有可能子句的强力枚举来简单地开始.
如果您使用遗传算法,您的变异概念应该包括根据您的一个生产规则的应用将表达式替换为另一个表达式.
请查看以下与GE相关的代码和信息站点:
http://www.bangor.ac.uk/~eep201/jge/
http://nohejl.name/age/
http://www.geneticprogramming.美国/ Home_Page.html
评估每个解决方案
适应度函数可以考虑解决方案的文本长度,多次生成的日期数,错过的日期数以及生成的错误日期数.
示例代码
根据请求,并且因为这是一个非常有趣的挑战,我已经编写了算法的基本实现来帮助您入门.虽然它的工作原理并没有完成,但设计应该更加深思熟虑,一旦你从这个例子中收集了基本的东西,我建议你考虑使用我上面提到的库.
/// <summary>
/// This is a very basic example implementation of a grammatical evolution algorithm for formulating a recurrence pattern in a set of dates.
/// It needs significant extensions and optimizations to be useful in a production setting.
/// </summary>
static class Program
{
#region "Class hierarchy that codifies the grammar"
class DatePattern
{
public Frequency frequency;
public Bounds bounds;
public override string ToString() { return "" + frequency + " " + bounds; }
public IEnumerable<DateTime> Dates()
{
return frequency == null ? new DateTime[] { } : frequency.FilterDates(bounds.GetDates());
}
}
abstract class Bounds
{
public abstract IEnumerable<DateTime> GetDates();
}
class YearBounds : Bounds
{
/* in the year .. */
public int year;
public override string ToString() { return "in the year " + year; }
public override IEnumerable<DateTime> GetDates()
{
var firstDayOfYear = new DateTime(year, 1, 1);
return Enumerable.Range(0, new DateTime(year, 12, 31).DayOfYear)
.Select(dayOfYear => firstDayOfYear.AddDays(dayOfYear));
}
}
abstract class Frequency
{
public abstract IEnumerable<DateTime> FilterDates(IEnumerable<DateTime> Dates);
}
class WeeklyFrequency : Frequency
{
/* every .. */
public DayOfWeek dayOfWeek;
public override string ToString() { return "every " + dayOfWeek; }
public override IEnumerable<DateTime> FilterDates(IEnumerable<DateTime> Dates)
{
return Dates.Where(date => (date.DayOfWeek == dayOfWeek));
}
}
class MonthlyFrequency : Frequency
{
/* every .. */
public Ordinal ordinal;
public DayOfWeek dayOfWeek;
/* .. of the month */
public override string ToString() { return "every " + ordinal + " " + dayOfWeek + " of the month"; }
public override IEnumerable<DateTime> FilterDates(IEnumerable<DateTime> Dates)
{
return Dates.Where(date => (date.DayOfWeek == dayOfWeek) && (int)ordinal == (date.Day - 1) / 7);
}
}
enum Ordinal { First, Second, Third, Fourth, Fifth }
#endregion
static Random random = new Random();
const double MUTATION_RATE = 0.3;
static Dictionary<Type, Type[]> subtypes = new Dictionary<Type, Type[]>();
static void Main()
{
// The input signifies the recurrence 'every first thursday of the month in 2010':
var input = new DateTime[] {new DateTime(2010,12,2), new DateTime(2010,11,4),new DateTime(2010,10,7),new DateTime(2010,9,2),
new DateTime(2010,8,5),new DateTime(2010,7,1),new DateTime(2010,6,3),new DateTime(2010,5,6),
new DateTime(2010,4,1),new DateTime(2010,3,4),new DateTime(2010,2,4),new DateTime(2010,1,7) };
for (int cTests = 0; cTests < 20; cTests++)
{
// Initialize with a random population
int treesize = 0;
var population = new DatePattern[] { (DatePattern)Generate(typeof(DatePattern), ref treesize), (DatePattern)Generate(typeof(DatePattern), ref treesize), (DatePattern)Generate(typeof(DatePattern), ref treesize) };
Run(input, new List<DatePattern>(population));
}
}
private static void Run(DateTime[] input, List<DatePattern> population)
{
var strongest = population[0];
int strongestFitness = int.MinValue;
int bestTry = int.MaxValue;
for (int cGenerations = 0; cGenerations < 300 && strongestFitness < -100; cGenerations++)
{
// Select the best individuals to survive:
var survivers = population
.Select(individual => new { Fitness = Fitness(input, individual), individual })
.OrderByDescending(pair => pair.Fitness)
.Take(5)
.Select(pair => pair.individual)
.ToArray();
population.Clear();
// The survivers are the foundation for the next generation:
foreach (var parent in survivers)
{
for (int cChildren = 0; cChildren < 3; cChildren++)
{
int treeSize = 1;
DatePattern child = (DatePattern)Mutate(parent, ref treeSize); // NB: procreation may also be done through crossover.
population.Add((DatePattern)child);
var childFitness = Fitness(input, child);
if (childFitness > strongestFitness)
{
bestTry = cGenerations;
strongestFitness = childFitness;
strongest = child;
}
}
}
}
Trace.WriteLine("Found best match with fitness " + Fitness(input, strongest) + " after " + bestTry + " generations: " + strongest);
}
private static object Mutate(object original, ref int treeSize)
{
treeSize = 0;
object replacement = Construct(original.GetType());
foreach (var field in original.GetType().GetFields())
{
object newFieldValue = field.GetValue(original);
int subtreeSize;
if (field.FieldType.IsEnum)
{
subtreeSize = 1;
if (random.NextDouble() <= MUTATION_RATE)
newFieldValue = ConstructRandomEnumValue(field.FieldType);
}
else if (field.FieldType == typeof(int))
{
subtreeSize = 1;
if (random.NextDouble() <= MUTATION_RATE)
newFieldValue = (random.Next(2) == 0
? Math.Min(int.MaxValue - 1, (int)newFieldValue) + 1
: Math.Max(int.MinValue + 1, (int)newFieldValue) - 1);
}
else
{
subtreeSize = 0;
newFieldValue = Mutate(field.GetValue(original), ref subtreeSize); // mutate pre-maturely to find out subtreeSize
if (random.NextDouble() <= MUTATION_RATE / subtreeSize) // makes high-level nodes mutate less.
{
subtreeSize = 0; // init so we can track the size of the subtree soon to be made.
newFieldValue = Generate(field.FieldType, ref subtreeSize);
}
}
field.SetValue(replacement, newFieldValue);
treeSize += subtreeSize;
}
return replacement;
}
private static object ConstructRandomEnumValue(Type type)
{
var vals = type.GetEnumValues();
return vals.GetValue(random.Next(vals.Length));
}
private static object Construct(Type type)
{
return type.GetConstructor(new Type[] { }).Invoke(new object[] { });
}
private static object Generate(Type type, ref int treesize)
{
if (type.IsEnum)
{
return ConstructRandomEnumValue(type);
}
else if (typeof(int) == type)
{
return random.Next(10) + 2005;
}
else
{
if (type.IsAbstract)
{
// pick one of the concrete subtypes:
var subtypes = GetConcreteSubtypes(type);
type = subtypes[random.Next(subtypes.Length)];
}
object newobj = Construct(type);
foreach (var field in type.GetFields())
{
treesize++;
field.SetValue(newobj, Generate(field.FieldType, ref treesize));
}
return newobj;
}
}
private static int Fitness(DateTime[] input, DatePattern individual)
{
var output = individual.Dates().ToArray();
var avgDateDiff = Math.Abs((output.Average(d => d.Ticks / (24.0 * 60 * 60 * 10000000)) - input.Average(d => d.Ticks / (24.0 * 60 * 60 * 10000000))));
return
-individual.ToString().Length // succinct patterns are preferred.
- input.Except(output).Count() * 300 // Forgetting some of the dates is bad.
- output.Except(input).Count() * 3000 // Spurious dates cause even more confusion to the user.
- (int)(avgDateDiff) * 30000; // The difference in average date is the most important guide.
}
private static Type[] GetConcreteSubtypes(Type supertype)
{
if (subtypes.ContainsKey(supertype))
{
return subtypes[supertype];
}
else
{
var types = AppDomain.CurrentDomain.GetAssemblies().ToList()
.SelectMany(s => s.GetTypes())
.Where(p => supertype.IsAssignableFrom(p) && !p.IsAbstract).ToArray();
subtypes.Add(supertype, types);
return types;
}
}
}
Run Code Online (Sandbox Code Playgroud)
希望这能让你走上正轨.务必在某处分享您的实际解决方案; 我认为它在很多场景中都非常有用.