Phy*_*ist 2 python arrays matlab numpy similarity
我有一个数组A和一个参考数组B.尺寸A至少和B.一样大.例如
A = [2,100,300,793,1300,1500,1810,2400]
B = [4,305,789,1234,1890]
Run Code Online (Sandbox Code Playgroud)
B实际上是指定时间信号中峰值的位置,并且A包含稍后峰值的位置.但是某些元素A实际上是不是我想要的(可能是由于噪声等)的山峰,我想找到"真正的"一个A基础B.在"真实的"元件A应接近那些B,和在上面给出的例子中,在"真实"的人A应A'=[2,300,793,1300,1810].在这个例子中应该很明显,这100,1500,2400不是我们想要的,因为它们与B中的任何元素相距甚远.如何在python/matlab中以最有效/准确的方式编写代码?
方法#1:使用NumPy broadcasting,我们可以在输入数组之间寻找绝对的逐元素减法,并使用适当的阈值来滤除不需要的元素A.对于给定的样本输入,似乎是90工作的阈值.
因此,我们会有一个实现,就像这样 -
thresh = 90
Aout = A[(np.abs(A[:,None] - B) < thresh).any(1)]
Run Code Online (Sandbox Code Playgroud)
样品运行 -
In [69]: A
Out[69]: array([ 2, 100, 300, 793, 1300, 1500, 1810, 2400])
In [70]: B
Out[70]: array([ 4, 305, 789, 1234, 1890])
In [71]: A[(np.abs(A[:,None] - B) < 90).any(1)]
Out[71]: array([ 2, 300, 793, 1300, 1810])
Run Code Online (Sandbox Code Playgroud)
方法#2:基于this post,这是一种使用内存的高效方法np.searchsorted,这对大型阵列至关重要 -
def searchsorted_filter(a, b, thresh):
choices = np.sort(b) # if b is already sorted, skip it
lidx = np.searchsorted(choices, a, 'left').clip(max=choices.size-1)
ridx = (np.searchsorted(choices, a, 'right')-1).clip(min=0)
cl = np.take(choices,lidx) # Or choices[lidx]
cr = np.take(choices,ridx) # Or choices[ridx]
return a[np.minimum(np.abs(a - cl), np.abs(a - cr)) < thresh]
Run Code Online (Sandbox Code Playgroud)
样品运行 -
In [95]: searchsorted_filter(A,B, thresh = 90)
Out[95]: array([ 2, 300, 793, 1300, 1810])
Run Code Online (Sandbox Code Playgroud)
运行时测试
In [104]: A = np.sort(np.random.randint(0,100000,(1000)))
In [105]: B = np.sort(np.random.randint(0,100000,(400)))
In [106]: out1 = A[(np.abs(A[:,None] - B) < 10).any(1)]
In [107]: out2 = searchsorted_filter(A,B, thresh = 10)
In [108]: np.allclose(out1, out2) # Verify results
Out[108]: True
In [109]: %timeit A[(np.abs(A[:,None] - B) < 10).any(1)]
100 loops, best of 3: 2.74 ms per loop
In [110]: %timeit searchsorted_filter(A,B, thresh = 10)
10000 loops, best of 3: 85.3 µs per loop
Run Code Online (Sandbox Code Playgroud)
2018年1月更新,进一步提升性能
我们可以np.searchsorted(..., 'right')通过利用从中获得的指数np.searchsorted(..., 'left')以及absolute计算来避免第二次使用,例如 -
def searchsorted_filter_v2(a, b, thresh):
N = len(b)
choices = np.sort(b) # if b is already sorted, skip it
l = np.searchsorted(choices, a, 'left')
l_invalid_mask = l==N
l[l_invalid_mask] = N-1
left_offset = choices[l]-a
left_offset[l_invalid_mask] *= -1
r = (l - (left_offset!=0))
r_invalid_mask = r<0
r[r_invalid_mask] = 0
r += l_invalid_mask
right_offset = a-choices[r]
right_offset[r_invalid_mask] *= -1
out = a[(left_offset < thresh) | (right_offset < thresh)]
return out
Run Code Online (Sandbox Code Playgroud)
更新时间以测试进一步的加速 -
In [388]: np.random.seed(0)
...: A = np.random.randint(0,1000000,(100000))
...: B = np.unique(np.random.randint(0,1000000,(40000)))
...: np.random.shuffle(B)
...: thresh = 10
...:
...: out1 = searchsorted_filter(A, B, thresh)
...: out2 = searchsorted_filter_v2(A, B, thresh)
...: print np.allclose(out1, out2)
True
In [389]: %timeit searchsorted_filter(A, B, thresh)
10 loops, best of 3: 24.2 ms per loop
In [390]: %timeit searchsorted_filter_v2(A, B, thresh)
100 loops, best of 3: 13.9 ms per loop
Run Code Online (Sandbox Code Playgroud)
深层发掘 -
In [396]: a = A; b = B
In [397]: N = len(b)
...:
...: choices = np.sort(b) # if b is already sorted, skip it
...:
...: l = np.searchsorted(choices, a, 'left')
In [398]: %timeit np.sort(B)
100 loops, best of 3: 2 ms per loop
In [399]: %timeit np.searchsorted(choices, a, 'left')
100 loops, best of 3: 10.3 ms per loop
Run Code Online (Sandbox Code Playgroud)
似乎searchsorted并且sort几乎占用了所有运行时,它们似乎对此方法至关重要.所以,看起来似乎没有任何进一步坚持这种基于排序的方法.
| 归档时间: |
|
| 查看次数: |
246 次 |
| 最近记录: |