Pandas:从数据框中删除反向重复项

Ada*_*dam 9 python dataframe pandas

我有一个包含两列的数据框,AB.在这种情况下,顺序A和顺序B并不重要; 例如,我会考虑(0,50)(50,0)重复.在pandas中,从数据框中删除这些重复项的有效方法是什么?

import pandas as pd

# Initial data frame.
data = pd.DataFrame({'A': [0, 10, 11, 21, 22, 35, 5, 50], 
                     'B': [50, 22, 35, 5, 10, 11, 21, 0]})
data
    A   B
0   0  50
1  10  22
2  11  35
3  21   5
4  22  10
5  35  11
6   5  21
7  50   0

# Desired output with "duplicates" removed. 
data2 = pd.DataFrame({'A': [0, 5, 10, 11], 
                      'B': [50, 21, 22, 35]})
data2
    A   B
0   0  50
1   5  21
2  10  22
3  11  35
Run Code Online (Sandbox Code Playgroud)

理想情况下,输出将按列的值排序A.

Psi*_*dom 10

您可以在删除重复项之前对数据框的每一行进行排序:

data.apply(lambda r: sorted(r), axis = 1).drop_duplicates()

#   A    B
#0  0   50
#1  10  22
#2  11  35
#3  5   21
Run Code Online (Sandbox Code Playgroud)

如果您希望按列对结果进行排序A:

data.apply(lambda r: sorted(r), axis = 1).drop_duplicates().sort_values('A')

#   A    B
#0  0   50
#3  5   21
#1  10  22
#2  11  35
Run Code Online (Sandbox Code Playgroud)

  • 不需要lambda,`.apply(sorted,axis = 1)`将起作用. (4认同)

Max*_*axU 8

这有点丑陋,但更快的解决方案:

In [44]: pd.DataFrame(np.sort(data.values, axis=1), columns=data.columns).drop_duplicates()
Out[44]:
    A   B
0   0  50
1  10  22
2  11  35
3   5  21
Run Code Online (Sandbox Code Playgroud)

时间:适用于8K行DF

In [50]: big = pd.concat([data] * 10**3, ignore_index=True)

In [51]: big.shape
Out[51]: (8000, 2)

In [52]: %timeit big.apply(lambda r: sorted(r), axis = 1).drop_duplicates()
1 loop, best of 3: 3.04 s per loop

In [53]: %timeit pd.DataFrame(np.sort(big.values, axis=1), columns=big.columns).drop_duplicates()
100 loops, best of 3: 3.96 ms per loop

In [59]: %timeit big.apply(np.sort, axis = 1).drop_duplicates()
1 loop, best of 3: 2.69 s per loop
Run Code Online (Sandbox Code Playgroud)

  • 对于矢量化实现,这是相同的答案.不!丑陋的:-) (2认同)