有没有办法_merge
在合并后获得等效的指标变量dplyr
?
类似于Pandas indicator = True
选项的东西基本上告诉你合并是如何进行的(来自每个数据集的匹配数等).
这是一个例子 Pandas
import pandas as pd
df1 = pd.DataFrame({'key1' : ['a','b','c'], 'v1' : [1,2,3]})
df2 = pd.DataFrame({'key1' : ['a','b','d'], 'v2' : [4,5,6]})
match = df1.merge(df2, how = 'left', indicator = True)
Run Code Online (Sandbox Code Playgroud)
在这里,经过left join
之间df1
和df2
,你想立刻知道多少行df1
找到了匹配中df2
,有多少人没
match
Out[53]:
key1 v1 v2 _merge
0 a 1 4.0 both
1 b 2 5.0 both
2 c 3 NaN left_only
Run Code Online (Sandbox Code Playgroud)
我可以将这个merge
变量制成表格:
match._merge.value_counts()
Out[52]:
both 2
left_only 1
right_only 0
Name: _merge, dtype: int64
Run Code Online (Sandbox Code Playgroud)
我没有看到任何可用的选项,例如,左连接 dplyr
key1 = c('a','b','c')
v1 = c(1,2,3)
key2 = c('a','b','d')
v2 = c(4,5,6)
df1 = data.frame(key1,v1)
df2 = data.frame(key2,v2)
> left_join(df1,df2, by = c('key1' = 'key2'))
key1 v1 v2
1 a 1 4
2 b 2 5
3 c 3 NA
Run Code Online (Sandbox Code Playgroud)
我在这里错过了什么吗?谢谢!
Stata _merge
在执行任何类型的合并或连接时类似地创建了一个新变量.我也发现有一个选项可以在执行后快速诊断合并.
在过去的几个月里,我一直在使用我编写的基本功能,只是修饰dplyr
连接.可能有更有效的方法来做到这一点,但这里有一个修饰的例子full_join
.如果设置选项,.merge = T
您将获得一个变量,称为.merge
类似于Stata或Pandas中的 _merge .(这也打印出一个诊断消息,关于每次使用它时匹配的数量和不匹配的数量.)我知道你已经有了问题的答案,但如果你想要一个功能,你可以反复使用,它的工作方式相同以full_join
中dplyr
,这里是一个开始.你显然需要加载dplyr来完成这项工作......
full_join_track <- function(x, y, by = NULL, suffix = c(".x", ".y"),
.merge = FALSE, ...){
# Checking to make sure used variable names are not already in use
if(".x_tracker" %in% names(x)){
message("Warning: variable .x_tracker in left data was dropped")
}
if(".y_tracker" %in% names(y)){
message("Warning: variable .y_tracker in right data was dropped")
}
if(.merge & (".merge" %in% names(x) | ".merge" %in% names(y))){
stop("Variable .merge already exists; change name before proceeding")
}
# Adding simple merge tracker variables to data frames
x[, ".x_tracker"] <- 1
y[, ".y_tracker"] <- 1
# Doing full join
joined <- full_join(x, y, by = by, suffix = suffix, ...)
# Calculating merge diagnoses
matched <- joined %>%
filter(!is.na(.x_tracker) & !is.na(.y_tracker)) %>%
NROW()
unmatched_x <- joined %>%
filter(!is.na(.x_tracker) & is.na(.y_tracker)) %>%
NROW()
unmatched_y <- joined %>%
filter(is.na(.x_tracker) & !is.na(.y_tracker)) %>%
NROW()
# Print merge diagnoses
message(
unmatched_x, " Rows ONLY from left data frame", "\n",
unmatched_y, " Rows ONLY from right data frame", "\n",
matched, " Rows matched"
)
# Create .merge variable if specified
if(.merge){
joined <- joined %>%
mutate(.merge =
case_when(
!is.na(.$.x_tracker) & is.na(.$.y_tracker) ~ "left_only",
is.na(.$.x_tracker) & !is.na(.$.y_tracker) ~ "right_only",
TRUE ~ "matched"
)
)
}
# Dropping tracker variables and returning data frame
joined <- joined %>%
select(-.x_tracker, -.y_tracker)
return(joined)
}
Run Code Online (Sandbox Code Playgroud)
举个例子:
data1 <- data.frame(x = 1:10, y = rnorm(10))
data2 <- data.frame(x = 4:20, z = rnorm(17))
full_join_track(data1, data2, .merge = T)
Run Code Online (Sandbox Code Playgroud)
我们根据 来创建“合并”列inner_join
,anti_join
然后将行与bind_rows
d1 <- inner_join(df1, df2, by = c('key1' = 'key2')) %>%
mutate(merge = "both")
bind_rows(d1, anti_join(df1, df2, by = c('key1' = 'key2')) %>%
mutate(merge = 'left_only'))
Run Code Online (Sandbox Code Playgroud)