dyl*_*unn 11 algorithm chess artificial-intelligence minimax alpha-beta-pruning
我正在实现一个国际象棋引擎,我已经编写了一个相当复杂的alpha-beta搜索例程,具有静止搜索和转置表.但是,我正在观察一个奇怪的错误.
评估函数使用了方块表,就像这个用于典当的:
static int ptable_pawn[64] = {
0, 0, 0, 0, 0, 0, 0, 0,
30, 35, 35, 40, 40, 35, 35, 30,
20, 25, 25, 30, 30, 25, 25, 20,
10, 20, 20, 20, 20, 20, 20, 10,
3, 0, 14, 15, 15, 14, 0, 3,
0, 5, 3, 10, 10, 3, 5, 0,
5, 5, 5, 5, 5, 5, 5, 5,
0, 0, 0, 0, 0, 0, 0, 0
};
Run Code Online (Sandbox Code Playgroud)
当它转过黑色时,表格会在x轴上反射出来.具体来说,如果你很好奇,查找会发生这样的情况,其中AH列映射到0-7,而行的颜色是白色的0-7:
int ptable_index_for_white(int col, int row) {
return col+56-(row*8);
}
int ptable_index_for_black(int col, int row) {
return col+(row*8);
}
Run Code Online (Sandbox Code Playgroud)
因此,h4(坐标7,3)上的棋子值白色为3点(厘米),而f6(坐标5,5)上的棋子值为3厘米(黑色).
整个评估功能目前是方块表和材料.
在更大的搜索深度,我的引擎正在选择一些真正可怕的举动.考虑从起始位置生成的此输出:
Iterative Deepening Analysis Results (including cached analysis)
Searching at depth 1... d1 [+0.10]: 1.b1c3
(4 new nodes, 39 new qnodes, 0 qnode aborts, 0ms), 162kN/s
Searching at depth 2... d2 [+0.00]: 1.e2e4 d7d5
(34 new nodes, 78 new qnodes, 0 qnode aborts, 1ms), 135kN/s
Searching at depth 3... d3 [+0.30]: 1.d2d4 d7d5 2.c1f4
(179 new nodes, 1310 new qnodes, 0 qnode aborts, 4ms), 337kN/s
Searching at depth 4... d4 [+0.00]: 1.g1f3 b8c6 2.e2e4 d7d5
(728 new nodes, 2222 new qnodes, 0 qnode aborts, 14ms), 213kN/s
Searching at depth 5... d5 [+0.20]: 1.b1a3 g8f6 2.d2d4 h8g8 3.c1f4
(3508 new nodes, 27635 new qnodes, 0 qnode aborts, 103ms), 302kN/s
Searching at depth 6... d6 [-0.08]: 1.d2d4 a7a5 2.c1f4 b7b6 3.f4c1 c8b7
(21033 new nodes, 112915 new qnodes, 0 qnode aborts, 654ms), 205kN/s
Searching at depth 7... d7 [+0.20]: 1.b1a3 g8f6 2.a1b1 h8g8 3.d2d4 g8h8 4.c1f4
(39763 new nodes, 330837 new qnodes, 0 qnode aborts, 1438ms), 258kN/s
Searching at depth 8... d8 [-0.05]: 1.e2e4 a7a6 2.e4e5 a6a5 3.h2h4 d7d6 4.e5d6 c7d6
(251338 new nodes, 2054526 new qnodes, 0 qnode aborts, 12098ms), 191kN/s
Run Code Online (Sandbox Code Playgroud)
在深度8处,请注意黑色打开时带有"... a7a6 ... a6a5",根据方块表,这些动作很可怕.此外,"h2h4"对白人来说是一个可怕的举动.为什么我的搜索功能会选择这种奇怪的动作?值得注意的是,这只是在更深的地方开始发生(深度3处的移动看起来很好).
而且,搜索经常会让人失误!考虑以下立场:
引擎推荐了一个可怕的错误(3 ... f5h3),不知何故错过了明显的回复(4. g2h3):
Searching at depth 7... d7 [+0.17]: 3...f5h3 4.e3e4 h3g4 5.f2f3 g8f6 6.e4d5 f6d5
(156240 new nodes, 3473795 new qnodes, 0 qnode aborts, 17715ms), 205kN/s
Run Code Online (Sandbox Code Playgroud)
不涉及静止搜索,因为错误发生在第1层(!!).
这是我的搜索功能的代码.对不起它太冗长了:我尽可能简化,但我不知道哪些部分与bug无关.我认为我的算法在某种程度上是错误的.
这个实现基于维基百科的这个实现,几乎完全是基于.(更新:我已经大大简化了搜索,我的bug仍然存在.)
// Unified alpha-beta and quiescence search
int abq(board *b, int alpha, int beta, int ply) {
pthread_testcancel(); // To allow search worker thread termination
bool quiescence = (ply <= 0);
// Generate all possible moves for the quiscence search or normal search, and compute the
// static evaluation if applicable.
move *moves = NULL;
int num_available_moves = 0;
if (quiescence) moves = board_moves(b, &num_available_moves, true); // Generate only captures
else moves = board_moves(b, &num_available_moves, false); // Generate all moves
if (quiescence && !useqsearch) return relative_evaluation(b); // If qsearch is turned off
// Abort if the quiescence search is too deep (currently 45 plies)
if (ply < -quiesce_ply_cutoff) {
sstats.qnode_aborts++;
return relative_evaluation(b);
}
// Allow the quiescence search to generate cutoffs
if (quiescence) {
int score = relative_evaluation(b);
alpha = max(alpha, score);
if (alpha >= beta) return score;
}
// Update search stats
if (quiescence) sstats.qnodes_searched++;
else sstats.nodes_searched++;
// Search hueristic: sort exchanges using MVV-LVA
if (quiescence && mvvlva) nlopt_qsort_r(moves, num_available_moves, sizeof(move), b, &capture_move_comparator);
move best_move_yet = no_move;
int best_score_yet = NEG_INFINITY;
int num_moves_actually_examined = 0; // We might end up in checkmate
for (int i = num_available_moves - 1; i >= 0; i--) { // Iterate backwards to match MVV-LVA sort order
apply(b, moves[i]);
// never move into check
coord king_loc = b->black_to_move ? b->white_king : b->black_king; // for side that just moved
if (in_check(b, king_loc.col, king_loc.row, !(b->black_to_move))) {
unapply(b, moves[i]);
continue;
}
int score = -abq(b, -beta, -alpha, ply - 1);
num_moves_actually_examined++;
unapply(b, moves[i]);
if (score >= best_score_yet) {
best_score_yet = score;
best_move_yet = moves[i];
}
alpha = max(alpha, best_score_yet);
if (alpha >= beta) break;
}
// We have no available moves (or captures) that don't leave us in check
// This means checkmate or stalemate in normal search
// It might mean no captures are available in quiescence search
if (num_moves_actually_examined == 0) {
if (quiescence) return relative_evaluation(b); // TODO: qsearch doesn't understand stalemate or checkmate
coord king_loc = b->black_to_move ? b->black_king : b->white_king;
if (in_check(b, king_loc.col, king_loc.row, b->black_to_move)) return NEG_INFINITY; // checkmate
else return 0; // stalemate
}
// record the selected move in the transposition table
evaltype type = (quiescence) ? qexact : exact;
evaluation eval = {.best = best_move_yet, .score = best_score_yet, .type = type, .depth = ply};
tt_put(b, eval);
return best_score_yet;
}
/*
* Returns a relative evaluation of the board position from the perspective of the side about to move.
*/
int relative_evaluation(board *b) {
int evaluation = evaluate(b);
if (b->black_to_move) evaluation = -evaluation;
return evaluation;
}
Run Code Online (Sandbox Code Playgroud)
我正在调用这样的搜索:
int result = abq(b, NEG_INFINITY, POS_INFINITY, ply);
Run Code Online (Sandbox Code Playgroud)
编辑:即使我简化了搜索例程,错误仍然存在.发动机简单地弄掉了碎片.您可以通过将其加载到XBoard(或任何其他与UCI兼容的GUI)并在强引擎上播放来轻松查看.在manlio的要求下,我上传了代码:
这是GitHub存储库(链接已删除;问题在上面的代码段中).它将在OS X或任何*nix系统上使用"make"构建.
if (score >= best_score_yet) {
Run Code Online (Sandbox Code Playgroud)
应该:
if (score > best_score_yet) {
Run Code Online (Sandbox Code Playgroud)
否则你会考虑采取错误的行动。第一个best_move_yet
是正确的(因为best_score_yet = NEG_INFINITY
),但其他动作score == best_score_yet
不一定更好。
更改该行:
起始位置
Iterative Deepening Analysis Results (including cached analysis)
Searching at depth 1... d1 [+0.10]: 1.e2e4
(1 new nodes, 4 new qnodes, 0 qnode aborts, 0ms, 65kN/s)
(ttable: 1/27777778 = 0.00% load, 0 hits, 0 misses, 1 inserts (with 0 overwrites), 0 insert failures)
Searching at depth 2... d2 [+0.00]: 1.e2e4 g8f6
(21 new nodes, 41 new qnodes, 0 qnode aborts, 0ms, 132kN/s)
(ttable: 26/27777778 = 0.00% load, 0 hits, 0 misses, 25 inserts (with 0 overwrites), 0 insert failures)
Searching at depth 3... d3 [+0.30]: 1.d2d4 g8f6 2.c1f4
(118 new nodes, 247 new qnodes, 0 qnode aborts, 5ms, 73kN/s)
(ttable: 187/27777778 = 0.00% load, 0 hits, 0 misses, 161 inserts (with 0 overwrites), 0 insert failures)
Searching at depth 4... d4 [+0.00]: 1.e2e4 g8f6 2.f1d3 b8c6
(1519 new nodes, 3044 new qnodes, 0 qnode aborts, 38ms, 119kN/s)
(ttable: 2622/27777778 = 0.01% load, 0 hits, 0 misses, 2435 inserts (with 0 overwrites), 1 insert failures)
Searching at depth 5... d5 [+0.10]: 1.g2g3 g8f6 2.f1g2 b8c6 3.g2f3
(10895 new nodes, 35137 new qnodes, 0 qnode aborts, 251ms, 184kN/s)
(ttable: 30441/27777778 = 0.11% load, 0 hits, 0 misses, 27819 inserts (with 0 overwrites), 0 insert failures)
Searching at depth 6... d6 [-0.08]: 1.d2d4 g8f6 2.c1g5 b8c6 3.g5f6 g7f6
(88027 new nodes, 249718 new qnodes, 0 qnode aborts, 1281ms, 264kN/s)
(ttable: 252536/27777778 = 0.91% load, 0 hits, 0 misses, 222095 inserts (with 0 overwrites), 27 insert failures)
Searching at depth 7... d7 [+0.15]: 1.e2e4 g8f6 2.d2d4 b8c6 3.d4d5 c6b4 4.g1f3
(417896 new nodes, 1966379 new qnodes, 0 qnode aborts, 8485ms, 281kN/s)
(ttable: 1957490/27777778 = 7.05% load, 0 hits, 0 misses, 1704954 inserts (with 0 overwrites), 817 insert failures)
Run Code Online (Sandbox Code Playgroud)
处于测试位置时:
Calculating...
Iterative Deepening Analysis Results (including cached analysis)
Searching at depth 1... d1 [+2.25]: 3...g8h6 4.(q)c3d5 (q)d8d5
(1 new nodes, 3 new qnodes, 0 qnode aborts, 0ms, 23kN/s)
(ttable: 3/27777778 = 0.00% load, 0 hits, 0 misses, 3 inserts (with 0 overwrites), 0 insert failures)
Searching at depth 2... d2 [-0.13]: 3...f5e4 4.c3e4 (q)d5e4
(32 new nodes, 443 new qnodes, 0 qnode aborts, 3ms, 144kN/s)
(ttable: 369/27777778 = 0.00% load, 0 hits, 0 misses, 366 inserts (with 0 overwrites), 0 insert failures)
Searching at depth 3... d3 [+0.25]: 3...g8h6 4.c3e2 h6g4
(230 new nodes, 2664 new qnodes, 0 qnode aborts, 24ms, 122kN/s)
(ttable: 2526/27777778 = 0.01% load, 0 hits, 0 misses, 2157 inserts (with 0 overwrites), 0 insert failures)
Searching at depth 4... d4 [-0.10]: 3...g8f6 4.e3e4 f5e6 5.f1b5
(2084 new nodes, 13998 new qnodes, 0 qnode aborts, 100ms, 162kN/s)
(ttable: 15663/27777778 = 0.06% load, 0 hits, 0 misses, 13137 inserts (with 0 overwrites), 2 insert failures)
Searching at depth 5... d5 [+0.15]: 3...g8f6 4.f1e2 h8g8 5.g2g4 f5e4 6.(q)c3e4 (q)f6e4
(38987 new nodes, 1004867 new qnodes, 0 qnode aborts, 2765ms, 378kN/s)
(ttable: 855045/27777778 = 3.08% load, 0 hits, 0 misses, 839382 inserts (with 0 overwrites), 302 insert failures)
Run Code Online (Sandbox Code Playgroud)