tit*_*ata 5 python dictionary python-itertools
我有如下列表的字典(它可以超过1M个元素,也假设字典按键排序)
import scipy.sparse as sp
d = {0: [0,1], 1: [1,2,3],
2: [3,4,5], 3: [4,5,6],
4: [5,6,7], 5: [7],
6: [7,8,9]}
Run Code Online (Sandbox Code Playgroud)
我想知道什么是最有效的方式(大字典的最快方法)将其转换为行和列索引列表,如:
r_index = [0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6]
c_index = [0, 1, 1, 2, 3, 3, 4, 5, 4, 5, 6, 5, 6, 7, 7, 7, 8, 9]
Run Code Online (Sandbox Code Playgroud)
以下是我到目前为止的一些解决方案:
使用迭代
row_ind = [k for k, v in d.iteritems() for _ in range(len(v))] # or d.items() in Python 3
col_ind = [i for ids in d.values() for i in ids]
Run Code Online (Sandbox Code Playgroud)使用pandas库
import pandas as pd
df = pd.DataFrame.from_dict(d, orient='index')
df = df.stack().reset_index()
row_ind = list(df['level_0'])
col_ind = list(df[0])
Run Code Online (Sandbox Code Playgroud)使用itertools
import itertools
indices = [(x,y) for x, y in itertools.chain.from_iterable([itertools.product((k,), v) for k, v in d.items()])]
indices = np.array(indices)
row_ind = indices[:, 0]
col_ind = indices[:, 1]
Run Code Online (Sandbox Code Playgroud)如果我的字典中有很多元素,我不知道哪种方式是处理这个问题的最快方法.谢谢!
python 中优化的第一条经验法则是,确保最内层的循环外包给某个库函数。这仅适用于 cpython - pypy 是一个完全不同的故事。在您的情况下,使用扩展会带来一些显着的加速。
import time
l = range(10000)
x = dict([(k, list(l)) for k in range(1000)])
def org(d):
row_ind = [k for k, v in d.items() for _ in range(len(v))]
col_ind = [i for ids in d.values() for i in ids]
def ext(d):
row_ind = [k for k, v in d.items() for _ in range(len(v))]
col_ind = []
for ids in d.values():
col_ind.extend(ids)
def ext_both(d):
row_ind = []
for k, v in d.items():
row_ind.extend([k] * len(v))
col_ind = []
for ids in d.values():
col_ind.extend(ids)
functions = [org, ext, ext_both]
for func in functions:
begin = time.time()
func(x)
elapsed = time.time() - begin
print(func.__name__ + ": " + str(elapsed))
Run Code Online (Sandbox Code Playgroud)
使用python2时的输出:
org: 0.512559890747
ext: 0.340406894684
ext_both: 0.149670124054
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
195 次 |
| 最近记录: |