jul*_*eth 8 python svm scikit-learn grid-search
我正在尝试为我的SVM找到参数,这给了我最好的AUC.但我无法在sklearn中找到AUC的任何得分功能.有人有想法吗?这是我的代码:
parameters = {"C":[0.1, 1, 10, 100, 1000], "gamma":[0.1, 0.01, 0.001, 0.0001, 0.00001]}
clf = SVC(kernel = "rbf")
clf = GridSearchCV(clf, parameters, scoring = ???)
svr.fit(features_train , labels_train)
print svr.best_params_
Run Code Online (Sandbox Code Playgroud)
那我可以用什么??? 获得高AUC分数的最佳参数?
pim*_*314 21
你可以简单地使用:
clf = GridSearchCV(clf, parameters, scoring='roc_auc')
Run Code Online (Sandbox Code Playgroud)
您可以自己创建任何得分手:
from sklearn.metrics import make_scorer
from sklearn.metrics import roc_curve, auc
# define scoring function
def custom_auc(ground_truth, predictions):
# I need only one column of predictions["0" and "1"]. You can get an error here
# while trying to return both columns at once
fpr, tpr, _ = roc_curve(ground_truth, predictions[:, 1], pos_label=1)
return auc(fpr, tpr)
# to be standart sklearn's scorer
my_auc = make_scorer(custom_auc, greater_is_better=True, needs_proba=True)
pipeline = Pipeline(
[("transformer", TruncatedSVD(n_components=70)),
("classifier", xgb.XGBClassifier(scale_pos_weight=1.0, learning_rate=0.1,
max_depth=5, n_estimators=50, min_child_weight=5))])
parameters_grid = {'transformer__n_components': [60, 40, 20] }
grid_cv = GridSearchCV(pipeline, parameters_grid, scoring = my_auc, n_jobs=-1,
cv = StratifiedShuffleSplit(n_splits=5,test_size=0.3,random_state = 0))
grid_cv.fit(X, y)
Run Code Online (Sandbox Code Playgroud)
有关更多信息,请在此处签出:sklearn make_scorer
小智 5
使用下面的代码,它将为您提供所有参数列表
import sklearn
sklearn.metrics.SCORERS.keys()
Run Code Online (Sandbox Code Playgroud)
选择要使用的适当参数
在您的情况下,以下代码将起作用
clf = GridSearchCV(clf, parameters, scoring = 'roc_auc')
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
6690 次 |
| 最近记录: |