raj*_*jay 17 sql postgresql r left-join dplyr
这个问题在某种程度上与问题有关,问题是在非平凡的标准上有效地合并两个数据框,并检查日期是否在r中的两个日期之间.我在这里发布的请求该功能是否存在: GitHub问题
我希望加入两个数据帧dplyr::left_join().我用来加入的条件是小于,大于ie,<=和>.是否dplyr::left_join()支持这种功能?或者只=在这些键之间使用操作符.这很容易从SQL运行(假设我在数据库中有数据帧)
这是一个MWE:我有一个公司年(fdata)的两个数据集,而第二个是每五年发生一次的调查数据.因此,对于fdata两个调查年份之间的所有年份,我加入相应的调查年度数据.
id <- c(1,1,1,1,
2,2,2,2,2,2,
3,3,3,3,3,3,
5,5,5,5,
8,8,8,8,
13,13,13)
fyear <- c(1998,1999,2000,2001,1998,1999,2000,2001,2002,2003,
1998,1999,2000,2001,2002,2003,1998,1999,2000,2001,
1998,1999,2000,2001,1998,1999,2000)
byear <- c(1990,1995,2000,2005)
eyear <- c(1995,2000,2005,2010)
val <- c(3,1,5,6)
sdata <- tbl_df(data.frame(byear, eyear, val))
fdata <- tbl_df(data.frame(id, fyear))
test1 <- left_join(fdata, sdata, by = c("fyear" >= "byear","fyear" < "eyear"))
Run Code Online (Sandbox Code Playgroud)
我明白了
Run Code Online (Sandbox Code Playgroud)Error: cannot join on columns 'TRUE' x 'TRUE': index out of bounds
除非left_join能处理这个条件,但我的语法遗漏了什么?
edd*_*ddi 19
data.table 从v 1.9.8开始添加非equi连接
library(data.table) #v>=1.9.8
setDT(sdata); setDT(fdata) # converting to data.table in place
fdata[sdata, on = .(fyear >= byear, fyear < eyear), nomatch = 0,
.(id, x.fyear, byear, eyear, val)]
# id x.fyear byear eyear val
# 1: 1 1998 1995 2000 1
# 2: 2 1998 1995 2000 1
# 3: 3 1998 1995 2000 1
# 4: 5 1998 1995 2000 1
# 5: 8 1998 1995 2000 1
# 6: 13 1998 1995 2000 1
# 7: 1 1999 1995 2000 1
# 8: 2 1999 1995 2000 1
# 9: 3 1999 1995 2000 1
#10: 5 1999 1995 2000 1
#11: 8 1999 1995 2000 1
#12: 13 1999 1995 2000 1
#13: 1 2000 2000 2005 5
#14: 2 2000 2000 2005 5
#15: 3 2000 2000 2005 5
#16: 5 2000 2000 2005 5
#17: 8 2000 2000 2005 5
#18: 13 2000 2000 2005 5
#19: 1 2001 2000 2005 5
#20: 2 2001 2000 2005 5
#21: 3 2001 2000 2005 5
#22: 5 2001 2000 2005 5
#23: 8 2001 2000 2005 5
#24: 2 2002 2000 2005 5
#25: 3 2002 2000 2005 5
#26: 2 2003 2000 2005 5
#27: 3 2003 2000 2005 5
# id x.fyear byear eyear val
Run Code Online (Sandbox Code Playgroud)
您还可以foverlaps通过更多的努力在1.9.6中使用它.
aos*_*ith 17
这看起来像是一个包含fuzzyjoin地址的任务.包的各种功能看起来和工作类似于dplyr连接功能.
在这种情况下,其中一个fuzzy_*_join功能将适合您.dplyr::left_join和之间的主要区别在于fuzzyjoin::fuzzy_left_join您提供了在match.fun参数匹配过程中使用的函数列表.请注意,by参数仍然与其中的相同left_join.
以下是一个例子.我使用的功能来匹配顷>=并<为fyear到byear和fyear到eyear的比较,分别.该
library(fuzzyjoin)
fuzzy_left_join(fdata, sdata,
by = c("fyear" = "byear", "fyear" = "eyear"),
match_fun = list(`>=`, `<`))
Source: local data frame [27 x 5]
id fyear byear eyear val
(dbl) (dbl) (dbl) (dbl) (dbl)
1 1 1998 1995 2000 1
2 1 1999 1995 2000 1
3 1 2000 2000 2005 5
4 1 2001 2000 2005 5
5 2 1998 1995 2000 1
6 2 1999 1995 2000 1
7 2 2000 2000 2005 5
8 2 2001 2000 2005 5
9 2 2002 2000 2005 5
10 2 2003 2000 2005 5
.. ... ... ... ... ...
Run Code Online (Sandbox Code Playgroud)
Ian*_*Gow 15
用一个filter.(但请注意,这个答案并没有产生正确的答案LEFT JOIN;但是MWE会给出正确的结果INNER JOIN.)
在dplyr若问合并两个表没有什么合并,所以在下面,我做一个虚拟变量两个表为此目的,然后过滤,然后放下包不开心dummy:
fdata %>%
mutate(dummy=TRUE) %>%
left_join(sdata %>% mutate(dummy=TRUE)) %>%
filter(fyear >= byear, fyear < eyear) %>%
select(-dummy)
Run Code Online (Sandbox Code Playgroud)
请注意,如果您在PostgreSQL中执行此操作(例如),查询优化器会通过dummy以下两个查询说明来查看变量:
> fdata %>%
+ mutate(dummy=TRUE) %>%
+ left_join(sdata %>% mutate(dummy=TRUE)) %>%
+ filter(fyear >= byear, fyear < eyear) %>%
+ select(-dummy) %>%
+ explain()
Joining by: "dummy"
<SQL>
SELECT "id" AS "id", "fyear" AS "fyear", "byear" AS "byear", "eyear" AS "eyear", "val" AS "val"
FROM (SELECT * FROM (SELECT "id", "fyear", TRUE AS "dummy"
FROM "fdata") AS "zzz136"
LEFT JOIN
(SELECT "byear", "eyear", "val", TRUE AS "dummy"
FROM "sdata") AS "zzz137"
USING ("dummy")) AS "zzz138"
WHERE "fyear" >= "byear" AND "fyear" < "eyear"
<PLAN>
Nested Loop (cost=0.00..50886.88 rows=322722 width=40)
Join Filter: ((fdata.fyear >= sdata.byear) AND (fdata.fyear < sdata.eyear))
-> Seq Scan on fdata (cost=0.00..28.50 rows=1850 width=16)
-> Materialize (cost=0.00..33.55 rows=1570 width=24)
-> Seq Scan on sdata (cost=0.00..25.70 rows=1570 width=24)
Run Code Online (Sandbox Code Playgroud)
并使用SQL更干净地完成它会得到完全相同的结果:
> tbl(pg, sql("
+ SELECT *
+ FROM fdata
+ LEFT JOIN sdata
+ ON fyear >= byear AND fyear < eyear")) %>%
+ explain()
<SQL>
SELECT "id", "fyear", "byear", "eyear", "val"
FROM (
SELECT *
FROM fdata
LEFT JOIN sdata
ON fyear >= byear AND fyear < eyear) AS "zzz140"
<PLAN>
Nested Loop Left Join (cost=0.00..50886.88 rows=322722 width=40)
Join Filter: ((fdata.fyear >= sdata.byear) AND (fdata.fyear < sdata.eyear))
-> Seq Scan on fdata (cost=0.00..28.50 rows=1850 width=16)
-> Materialize (cost=0.00..33.55 rows=1570 width=24)
-> Seq Scan on sdata (cost=0.00..25.70 rows=1570 width=24)
Run Code Online (Sandbox Code Playgroud)
Jon*_*ing 10
dplyr v1.1.0现在包括执行像这样的非等值连接的功能,其语法几乎与您尝试过的语法完全相同。对于具有许多部分匹配的数据,这将比使用fuzzyjoin或filter过度包含连接之后的步骤性能更高。
# Relies on dplyr >=1.1.0, released Jan 2023
library(dplyr)
left_join(fdata, sdata, join_by(fyear >= byear,fyear < year))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
16084 次 |
| 最近记录: |