pix*_*xel 65 r vector matrix multiplication
我正在优化一个函数,我想摆脱缓慢的for循环.我正在寻找一种更快的方法来将矩阵的每一行乘以一个向量.
有任何想法吗?
编辑:
我不是在寻找'经典'乘法.
例如.我有一个有23列和25行的矩阵和一个长度为23的向量.结果我想要矩阵25x23,每行乘以向量.
hat*_*rix 73
我想你在找sweep().
# Create example data and vector
mat <- matrix(rep(1:3,each=5),nrow=3,ncol=5,byrow=TRUE)
[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 1 1
[2,] 2 2 2 2 2
[3,] 3 3 3 3 3
vec <- 1:5
# Use sweep to apply the vector with the multiply (`*`) function
# across columns (See ?apply for an explanation of MARGIN)
sweep(mat, MARGIN=2, vec, `*`)
[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 2 4 6 8 10
[3,] 3 6 9 12 15
Run Code Online (Sandbox Code Playgroud)
这是R的核心功能之一,虽然多年来已经对其进行了改进.
Wok*_*Wok 38
> MyMatrix <- matrix(c(1,2,3, 11,12,13), nrow = 2, ncol=3, byrow=TRUE)
> MyMatrix
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 11 12 13
> MyVector <- c(1:3)
> MyVector
[1] 1 2 3
Run Code Online (Sandbox Code Playgroud)
你可以使用:
> t(t(MyMatrix) * MyVector)
[,1] [,2] [,3]
[1,] 1 4 9
[2,] 11 24 39
Run Code Online (Sandbox Code Playgroud)
要么:
> MyMatrix %*% diag(MyVector)
[,1] [,2] [,3]
[1,] 1 4 9
[2,] 11 24 39
Run Code Online (Sandbox Code Playgroud)
Wok*_*Wok 25
实际上,sweep这不是我电脑上最快的选择:
MyMatrix <- matrix(c(1:1e6), ncol=1e4, byrow=TRUE)
MyVector <- c(1:1e4)
Rprof(tmp <- tempfile(),interval = 0.001)
t(t(MyMatrix) * MyVector) # first option
Rprof()
MyTimerTranspose=summaryRprof(tmp)$sampling.time
unlink(tmp)
Rprof(tmp <- tempfile(),interval = 0.001)
MyMatrix %*% diag(MyVector) # second option
Rprof()
MyTimerDiag=summaryRprof(tmp)$sampling.time
unlink(tmp)
Rprof(tmp <- tempfile(),interval = 0.001)
sweep(MyMatrix ,MARGIN=2,MyVector,`*`) # third option
Rprof()
MyTimerSweep=summaryRprof(tmp)$sampling.time
unlink(tmp)
Rprof(tmp <- tempfile(),interval = 0.001)
t(t(MyMatrix) * MyVector) # first option again, to check order
Rprof()
MyTimerTransposeAgain=summaryRprof(tmp)$sampling.time
unlink(tmp)
MyTimerTranspose
MyTimerDiag
MyTimerSweep
MyTimerTransposeAgain
Run Code Online (Sandbox Code Playgroud)
这会产生:
> MyTimerTranspose
[1] 0.04
> MyTimerDiag
[1] 40.722
> MyTimerSweep
[1] 33.774
> MyTimerTransposeAgain
[1] 0.043
Run Code Online (Sandbox Code Playgroud)
除了是最慢的选项之外,第二个选项达到内存限制(2046 MB).然而,考虑到剩下的选择,双转置似乎比sweep我看来要好很多.
编辑
只是重复尝试较小的数据:
MyMatrix <- matrix(c(1:1e3), ncol=1e1, byrow=TRUE)
MyVector <- c(1:1e1)
n=100000
[...]
for(i in 1:n){
# your option
}
[...]
> MyTimerTranspose
[1] 5.383
> MyTimerDiag
[1] 6.404
> MyTimerSweep
[1] 12.843
> MyTimerTransposeAgain
[1] 5.428
Run Code Online (Sandbox Code Playgroud)
为了速度,可以在乘法之前从向量创建矩阵
mat <- matrix(rnorm(1e6), ncol=1e4)
vec <- c(1:1e4)
mat * matrix(vec, dim(mat)[1], length(vec))
library(microbenchmark)
microbenchmark(
transpose = t(t(mat) * vec),
make_matrix = mat * matrix(vec, dim(mat)[1], length(vec), byrow = TRUE),
sweep = sweep(mat,MARGIN=2,vec,`*`))
#Unit: milliseconds
# expr min lq mean median uq max neval cld
# transpose 9.940555 10.480306 14.39822 11.210735 16.19555 77.67995 100 b
#make_matrix 5.556848 6.053933 9.48699 6.662592 10.74121 74.14429 100 a
# sweep 8.033019 8.500464 13.45724 12.331015 14.14869 77.00371 100 b
Run Code Online (Sandbox Code Playgroud)